首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
It is important to understand the role that different predators can have to be able to predict how changes in the predator assemblage may affect the prey community and ecosystem attributes. We tested the effects of different stream predators on macroinvertebrates and ecosystem attributes, in terms of benthic algal biomass and accumulation of detritus, in artificial stream channels. Predator richness was manipulated from zero to three predators, using two fish and one crayfish species, while density was kept equal (n = 6) in all treatments with predators. Predators differed in their foraging strategies (benthic vs. drift feeding fish and omnivorous crayfish) but had overlapping food preferences. We found effects of both predator species richness and identity, but the direction of effects differed depending on the response variable. While there was no effect on macroinvertebrate biomass, diversity of predatory macroinvertebrates decreased with increasing predator species richness, which suggests complementarity between predators for this functional feeding group. Moreover, the accumulation of detritus was affected by both predator species richness and predator identity. Increasing predator species richness decreased detritus accumulation and presence of the benthic fish resulted in the lowest amounts of detritus. Predator identity (the benthic fish), but not predator species richness had a positive effect on benthic algal biomass. Furthermore, the results indicate indirect negative effects between the two ecosystem attributes, with a negative correlation between the amount of detritus and algal biomass. Hence, interactions between different predators directly affected stream community structure, while predator identity had the strongest impact on ecosystem attributes.  相似文献   

2.
Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio rivers, Midwest USA. In 2004 and 2005, benthic macroinvertebrates, water chemistry, and habitat data were collected from randomly selected sites on each of the St. Croix, Wisconsin, Minnesota, Scioto, Wabash, and Illinois rivers. We first identified the human disturbance gradient using principal components analysis (PCA) of abiotic data. From the PCA, least disturbed sites showed strong separation from stressed sites along a gradient contrasting high water clarity, canopy cover, habitat scores, and plant-based substrates at one end and higher conductivity and nutrient concentrations at the other. Evaluation of 97 benthic metrics identified those with good range, responsiveness, and relative scope of impairment, as well as redundancies with other metrics. The final index was composed of Diptera taxa richness, EPT taxa richness, Coleoptera taxa richness, percent oligochaete and leech taxa, percent collector-filterer individuals, predator taxa richness, percent burrower taxa, tolerant taxa richness, and percent facultative individuals. Each of the selected metrics was scored using upper and lower thresholds based on all sites, and averaging across the nine metric scores, we obtained the Non-wadeable Macroinvertebrate Assemblage Condition Index (NMACI). The NMACI showed a strong response to disturbance using a validation data set and was highly correlated with non-metric multidimensional scaling (NMDS) ordination axes of benthic taxa. The cumulative distribution function of index scores for each river showed qualitative differences in condition among rivers. NMACI scores were highest for the federally protected St. Croix River and lowest for the Illinois River. Other rivers were intermediate and generally reflected the mixture of land use types within individual basins. Use of regional reference sites, though setting a high level of expectation, provides a valuable frame of reference for the potential of large river benthic communities that will aid management and restoration efforts.  相似文献   

3.
Woody debris (CWD) is an important habitat component in northern Gulf of Mexico coastal plain streams, where low gradients and low flows allow accumulation of CWD and promote low dissolved oxygen (DO) concentrations. We tested the influences of CWD and DO on stream macroinvertebrates experimentally by placing two surface area CWD treatments each in three concentrations of ambient DO in two streams in Louisiana, USA, with macroinvertebrates collected from ambient woody debris used as a control. We also sampled macroinvertebrates in benthic and woody debris habitats in three streams twice yearly over 2 years to examine the applicability of the experimental results. Total abundance, richness (generic), and Shannon–Wiener diversity were all higher in lower DO conditions during the experiment, and total abundance was higher in the larger CWD treatment. Stream sampling corroborated the relationship between higher diversity and low DO in both benthic and woody debris habitats, but the relationship between richness and low DO only was supported in benthic habitats. Few taxa correlated with DO or CWD in the experiment (5 of 21 taxa) or stream survey (2 of 54 taxa). Whereas most taxa were uncorrelated with experimentally manipulated and in-stream measured variables, we suggest these taxa respond as generalists to stream habitat and physicochemistry. Based on this experiment and stream sampling, we believe the majority of macroinvertebrates in these streams are tolerant of seasonally low DO conditions.  相似文献   

4.
According to the guidelines of the European Water Framework Directive, assessment of the ecological quality of streams and rivers should be based on type-specific reference conditions. Moreover to support biological indicators an hydromorphological analysis is also requested for each river type. The rationale for including an habitat assessment in biomonitoring study is that a biological community can be influenced by habitat quality just as water chemistry.In the present work benthic macroinvertebrates were analysed in a specific river type of Central Italy (small-sized streams, volcanic-siliceous), to identify taxa assemblages at the mesohabitat scale and to test how common measures of benthic community used in biomonitoring differ between riffles and pools in order to evaluate if differences may influence water quality classification.Macroinvertebrates were collected in 10 selected streams, covering the whole quality range present in the geographic area from ‘reference sites’ to human-impacted sites, along a pool–riffle sequence following a multihabitat sampling protocol.We compared assemblage of macroinvertebrates found in different mesohabitats using principal component analysis (PCA). Similar site grouping was obtained in riffle, pool and abiotic analysis.The measures of diversity and abundance were used as replicates in ANOVA analysis to test differences between pools and riffles within the groups of sites. There were no significant differences in terms of taxa richness and total abundance.When we compared the abundance of each taxon we found significant differences only in the group of reference sites with 18 taxa (about 25%) that showed a significant habitat preference.Our findings support that macroinvertebrates assemblages reflected primarily the environmental conditions and differences at mesohabitat scale are strongly correlated to hydromorphological condition and are maximized in reference sites. However such differences do not influence the ecological status assessment in this typology.  相似文献   

5.
Dreissenid mussels (the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis ) have invaded lakes and rivers throughout North America and Europe, where they have been linked to dramatic changes in benthic invertebrate community diversity and abundance. Through a meta-analysis of published data from 47 sites, we developed statistical models of Dreissena impact on benthic macroinvertebrates across a broad range of habitats and environmental conditions. The introduction of Dreissena was generally associated with increased benthic macroinvertebrate density and taxonomic richness, and with decreased community evenness (of taxa excluding Dreissena ). However, the strength of these effects varied with sediment particle size across sites. The effects of Dreissena differed among taxonomic and functional groups of macroinvertebrates, with positive effects on the densities of scrapers and predators, particularly leeches (Hirudinea), flatworms (Turbellaria), and mayflies (Ephemeroptera). Gastropod densities increased in the presence of Dreissena , but large-bodied snail taxa tended to decline. Dreissena was associated with declines in the densities sphaeriid clams and other large filter-feeding taxa, as well as burrowing amphipods ( Diporeia spp.), but had strong positive effects on gammarid amphipods. These patterns are robust to variation in the methodology of primary studies. The effects of Dreissena are remarkably concordant with those of ecologically similar species, suggesting universality in the interactions between introduced byssally attached mussels and other macroinvertebrates.  相似文献   

6.
雅鲁藏布江流域底栖动物多样性及生态评价   总被引:4,自引:0,他引:4  
雅鲁藏布江起源于喜马拉雅山,是世界上海拔最高的河流之一,是流经我国西藏境内重要的国际河流,其河流生态系统具有特殊地貌及生态条件。研究该流域底栖动物多样性分布特征及其影响因子,是科学评价该区域河流生态系统健康状况,实现资源可持续开发利用的基础。2009年10月—2010年6月期间,以底栖动物作为指示物种,对雅江流域干支流及堰塞湖的14个采样断面进行河流生态评价。采用Alpha及Beta生物多样性指数分别指示局部采样河段及全区域的底栖动物多样性。对采样断面底栖动物组成分析发现:14个采样断面共采集到底栖动物110种,隶属57科102属。雅江干流底栖动物种类数最高为29,平均为19。支流年楚河种类数为17。支流拉萨河,尼洋河,帕龙藏布的最高种类数分别为25,33,36;平均种类数分别为21,21,22,生物多样性普遍高于干流。整个流域中底栖动物平均种类数相差不大,但种类组成和密度相差较大。调查区域的Beta多样性指数β高于低海拔地区的相似的山区河流,说明雅江流域内底栖动物群落差异性高于正常海拔地区。对14个采样断面的物种组成进行除趋势对应分析表明:影响雅江流域底栖动物多样性的主要因素为河型,河床阻力结构,堤岸结构,水流流速。保持稳定的阶梯-深潭结构和自然堤岸结构,以及适宜的流速有利于保护雅江河流生态。  相似文献   

7.
The impacts of watershed urbanization on streams have been studied worldwide, but are rare in China. We examined relationships among watershed land uses and stream physicochemical and biological attributes, impacts of urbanization on overall stream conditions, and the response pattern of macroinvertebrate assemblage metrics to the percent of impervious area (PIA) of watersheds in the middle section of the Qiantang River, Zhejiang Province, China. Environmental variables and benthic macroinvertebrates of 60 stream sites with varied levels of watershed urban land use were sampled in April, 2010. Spearman correlation analysis showed watershed urbanization levels significantly correlated with increased stream depth, width, and values of conductivity, total nitrogen, ammonia, phosphate, calcium, magnesium, and chemical oxygen demand for the study streams. There was significant difference in total taxa richness, Empheroptera, Plecoptera, and Trichoptera (EPT) taxa richness, and Diptera taxa richness, percentages of individual abundances of EPT, Chironomidae, shredders, filterers, and scrapers, and Shannon–Wiener diversity index between reference streams and urban impacted streams. In contrast, percentages of individual abundances for collectors, oligochaeta, and tolerant taxa, and biotic index were significantly higher in urban impacted than reference streams. All the above metrics were significantly correlated with PIA. The response patterns of total taxa richness, EPT taxa richness, and Shannon–Wiener diversity index followed a drastic decrease at thresholds of 3.6, 3.7, and 5.5% of PIA, respectively. Our findings indicate that stream benthic macroinvertebrate metrics are effective indicators of impacts of watershed urban development, and the PIA-imperviousness thresholds we identified could potentially be used for setting benchmarks for watershed development planning and for prioritizing high valued stream systems for protection and rehabilitation.  相似文献   

8.
Anderson CB  Rosemond AD 《Oecologia》2007,154(1):141-153
Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of macroinvertebrate biomass (positive) were inversely related. Thus, while a generally positive relationship between diversity and ecosystem function has been found in a variety of systems, this work shows how they can be decoupled by responding to alterative mechanisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Coal mining in central Appalachia USA causes increased specific conductance in receiving streams. Researchers have examined benthic macroinvertebrate community structure in such streams using temporally discrete measurements of SC and benthic macroinvertebrates; however, both SC and benthic macroinvertebrate communities exhibit intra-annual variation. Twelve central Appalachian headwater streams with reference quality physical habitat and physicochemical conditions (except for elevated SC in eight streams) were sampled ≤fourteen times each between June 2011 and November 2012 to evaluate benthic macroinvertebrate community structure. Specific conductance was recorded at each sampling event and by in situ data loggers. Streams were classified by mean SC Level (Reference, 17–142 μS/cm; Medium, 262–648 μS/cm; and High, 756–1535 μS/cm). Benthic macroinvertebrate community structure was quantified using fifteen metrics selected to characterize community composition and presence of taxa from orders Ephemeroptera, Plecoptera, and Trichoptera. Metrics were analyzed for differences among SC Levels and months of sampling. Reference streams differed significantly from Medium-SC and High-SC streams for 11 metrics. Medium-SC streams had the most metrics exhibiting significant differences among months. Relative abundances of Plecoptera and Trichoptera were not sensitive to SC, as the families Leuctridae and Hydropsychidae exhibited increased relative abundance (vs. reference) in streams with elevated SC. In contrast, Ephemeroptera richness and relative abundance were lower, relative to reference, in elevated-SC streams despite increased relative abundance of Baetidae. Temporal variability was evident in several metrics due to influence by taxa with seasonal life cycles. These results demonstrate that benthic macroinvertebrate communities in elevated-SC streams are altered from reference condition, and that metrics differ in SC sensitivity. The time of year when samples are taken influenced measured levels and differences from reference condition for most metrics.  相似文献   

10.
Biological indicators are being increasingly used to rapidly monitor changing river quality. Among these bioindicators are macroinvertebrates. A short-coming of macroinvertebrate rapid assessments is that they use higher taxa, and therefore lack taxonomic resolution and species-specific responses. One subset of invertebrate taxa is the Odonata, which as adults, are sensitive indicators of both riparian and river conditions. Yet adult Odonata are not necessarily an umbrella taxon for all other taxa. Therefore, we investigated whether the two metrics of aquatic macroinvertebrate higher taxa and adult odonate species might complement each other, and whether together they provide better clarity on river health and integrity than one subset alone. Results indicated that both metrics provide a similar portrait of large-scale, overall river conditions. At the smaller spatial scale of parts of rivers, Odonata were highly sensitive to riparian vegetation, and much more so than macroinvertebrate higher taxa. Odonate species were more sensitive to vegetation structure than they were to vegetation composition. Landscape context is also important, with the odonate assemblages at point localities being affected by the neighbouring dominant habitat type. Overall, benthic macroinvertebrates and adult Odonata species provide a highly complementary pair of metrics which together provide large spatial scale (river system) and small spatial scale (point localities) information on the impact of stressors such as riparian invasive alien trees. As adult Odonata are easy to sample and are sensitive to disturbance at both small and large spatial scales, they are valuable indicators for rapid assessment of river condition and riparian quality.  相似文献   

11.
The lack of biological systems for the assessment of ecological quality specific to mountain ponds prevents the effective management of these natural resources. In this article we develop an index based on macroinvertebrates sensitive to the gradient of nutrient enrichment. With this aim, we sampled 31 ponds along a gradient of trophy and with similar geomorphological characteristics and watershed use in protected areas of the central Apennines. A bioassessment protocol was adopted to collect and process benthic samples and key-associated physical, chemical, and biological variables during the summer growth season of 1998. We collected 61 genera of macroinvertebrates belonging to 31 families. We calculated 31 macroinvertebrate metrics based on selected and total taxa richness, richness of some key groups, abundance, functional groups and tolerance to organic pollution. The gradient of trophy was quantified with summer concentrations of chlorophyll a. We followed a stepwise procedure to evaluate the effectiveness of a given metric for use in the multimetric index. Those were the pollution tolerance metric ASPT, three metrics based on taxonomic richness (the richness of macroinvertebrate genera, the richness of chironomid taxa, and the percentage of total richness composed by Ephemeroptera, Odonata, and Trichoptera), two metrics based on FFG attributes (richness of collector gatherer taxa and richness of scraper taxa) and the habit-based metric richness of burrowers. The 95th percentile of each metric distribution among all ponds was trisected for metric scoring. The final Pond Macroinvertebrate Integrity Index ranged from 7 to 35 and had a good correlation (R 2 = 0.71) with the original gradient of environmental degradation. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

12.
  1. The importance of flow‐related factors to benthic organisms, as well as the role of habitat conditions in shaping aquatic communities during low‐flow periods, have been recognised. Despite this, the preferences of macroinvertebrates to the ratio of lentic to lotic habitats at the reach scale have not been accurately quantified in most instances.
  2. Aquatic invertebrates and habitat features in a range of temporary rivers in Sardinia were investigated. The investigation focused on the flow‐related characteristics that contribute to defining the lentic–lotic condition of the river reaches. The relation of habitat features to benthic taxa distributions was assessed using multidimensional scaling. The main aim of the paper was to quantify the responses of taxa to the different lentic and lotic habitat conditions by applying hierarchical logistic regressions. Finally, taxon optima were aligned along the lentic–lotic gradient and the responses of different taxonomic groups compared.
  3. Unbroken waves and imperceptible flow were correlated with benthic taxa variability, suggesting local hydraulics and turbulence have a major role in regulating community composition. The overall lentic–lotic character of the river reaches was also clearly related to the benthic taxa distribution. More than 80% of taxa were significantly related to the lentic–lotic gradient, and an asymmetrical response curve was the predominant model.
  4. Benthic groups showed taxon optima clustered in different ranges of the lentic–lotic gradient. Odonata, Coleoptera, Hemiptera, and Mollusca preferred clearly lentic conditions. Diptera mainly ranged on the lotic side of the gradient, while Trichoptera were relatively uniformly distributed across the gradient. Ephemeroptera taxa clustered in intermediate lentic–lotic conditions, with two species preferring extremely lentic habitats. In general, optima converged at intermediate and extremely lentic conditions, presumably due, respectively, to the coexistence of different lentic and lotic features and to the highly diverse environmental characteristics under extremely lentic situations.
  5. These results support the conclusion that dissimilar ecological factors act on benthic taxa along the lentic–lotic range and species favouring different lentic–lotic conditions are subjected to pressures of different nature. This should not be ignored when defining species preferences and studying community structure or relationships between species in Mediterranean rivers, which cyclically vary their habitat composition. In addition, the uneven distribution of optima of different groups along the lentic–lotic gradient might affect macroinvertebrate metrics when assessing ecological status or establishing reference conditions under variable climatic conditions.
  相似文献   

13.
1. Dam removal has great potential for restoring rivers and streams, yet limited data exist documenting recovery of associated biota within these systems following removals, especially on larger systems. This study examined the effects of a dam breach on benthic macroinvertebrate and fish assemblages in the Fox River, Illinois, U.S.A. 2. Benthic macroinvertebrates and fish were collected above and below the breached dam and three nearby intact dams for 1 year pre‐ and 3 years post‐breach (2 years of additional pre‐breach fish data were obtained from previous surveys). We also examined the effects of the breach on associated habitat by measuring average width, depth, flow rate and bed particle size at each site. 3. Physical habitat at the former impoundment (IMP) became comparable to free‐flowing sites (FF) within 1 year of the breach (width and depth decreased, flow rate and bed particle size increased). We also found a strong temporal effect on depth and flow rate at all surveyed sites. 4. Following the breach, relative abundance of Ephemeroptera, Plecoptera and Trichoptera (largely due to hydropsychid caddisflies) increased, whereas relative abundance of Ostracoda decreased, in the former IMP to levels comparable to FF sites. High variation in other metrics (e.g. total taxa, diversity) precluded determination of an effect of the breach on these aspects of the assemblage. However, non‐metric multidimensional scaling (NMDS) ordinations indicated that overall macroinvertebrate assemblage structure at the former IMP shifted to a characteristically FF assemblage 2 years following the breach. 5. Total fish taxa and a regional fish index of biotic integrity became more similar in the former IMP to FF sites following the breach. However, other fish metrics (e.g. biomass, diversity, density) did not show a strong response to the breach of the dam. Ordinations of abundance data suggested the fish assemblage only slightly shifted to FF characteristics 3 years after the breach. 6. Effects of the breach to the site immediately below the former dam included minor alterations in habitat (decreased flow rate and increased particle size) and short‐term changes in several macroinvertebrate metrics (e.g. decreased assemblage diversity and EPT richness for first post‐year), but longer‐term alterations in several fish metrics (e.g. decreased assemblage richness for all three post‐years; decreased density for first two post‐years). However, NMDS ordinations suggested no change to overall assemblage structure for both macroinvertebrates and fish following the breach at this downstream site. 7. Collectively, our results support the effectiveness of dam removal as a restoration practice for impaired streams and rivers. However, differences in response times of macroinvertebrates and fish coupled with the temporal effect on several habitat variables highlight the need for longer‐term studies.  相似文献   

14.
1. This study investigated the relation of benthic macroinvertebrates to environmental gradients in Central European lowland rivers. Taxonomic structure (taxa) and functional composition (metrics) were related to gradients at four different spatial scales (ecoregion, catchment, reach and site). The environmental variables at the catchment‐, reach‐ and site scales reflected the intensity of human impact: catchment and floodplain land use, riparian and floodplain degradation, flow regulation and river bank and bed modification. 2. Field surveys and GIS yielded 130 parameters characterising the hydromorphology and land use of 75 river sections in Sweden, the Netherlands, Germany and Poland. Two hundred and forty‐four macroinvertebrate taxa and 84 derived community metrics and biotic indices such as functional guilds, diversity and composition measures were included in the analysis. 3. Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) showed that hydromorphological and land use variables explained 11.4%, 22.1% and 15.8% of the taxa variance at the catchment (‘macro’), reach (‘meso’) and site (‘micro’) scales, respectively, compared with 14.9%, 33.2% and 21.5% of the variance associated with the derived metrics. Ecoregion and season accounted for 10.9% and 20.5% of the variance of the taxonomic structure and functional composition, respectively. 4. Partial CCA (pCCA) and RDA (pRDA) showed that the unique variance explained was slightly higher for taxa than for metrics. By contrast, the joint variance explained for metrics was much higher at all spatial scales and largest at the reach scale. Environmental variables explained 46.8% of metric variance and 32.4% of taxonomic structure. 5. Canonical Correspondence Analysis and RDA identified clear environmental gradients along the two main ordination axes, namely, land use and hydromorphological degradation. The impact of catchment land use on benthic macroinvertebrates was mainly revealed by the proportion of urban areas. At the reach scale, riparian and floodplain attributes (bank fixation, riparian wooded vegetation, shading) and the proportion of large woody debris were strong predictors of the taxonomic structure and functional composition of benthic macroinvertebrates. At the site scale, artificial substrata indicated human impact, particularly the proportion of macro‐ and mesolithal used for bank enforcement (rip–rap). 6. Our study revealed the importance of benthic macroinvertebrate functional measures (functional guilds, composition and abundance measures, sensitivity and tolerance measures, diversity measures) for detecting the impact of hydromorphological stress at different spatial scales.  相似文献   

15.
长白山源头溪流底栖动物群落结构季节动态   总被引:4,自引:1,他引:3  
王璐  杨海军  李昆  李玲  南晓飞  张振兴 《生态学报》2018,38(13):4834-4842
源头溪流是河流生态系统物质循环和能量流动的重要区域,对底栖动物的生物多样性维持具有重要意义。目前,针对我国源头溪流底栖动物群落结构的研究薄弱,对长白山源头溪流底栖动物季节动态的研究尚未见报道。采用野外原位定量取样的方法,力图阐释长白山源头溪流底栖动物群落结构的季节动态特征及其主要环境驱动因子。研究结果表明:(1)共计采集底栖动物90个分类单元,隶属于3纲9目38科。其中,水生昆虫85属,占绝对优势。底栖动物群落结构的季节动态明显,底栖动物密度及多样性在夏、秋季显著高于冬季和春季,并在冬季达到最低值。(2)底栖动物功能摄食类群以收集者占优势,其次为撕食者、捕食者和刮食者,滤食者相对丰度最低。不同功能摄食类群的季节动态不一致,但密度和物种丰富度整体表现为秋季最高。(3)水温、凋落叶分布和流速是长白山源头溪流底栖动物群落结构季节动态的主要环境驱动因子。本研究可为长白山源头溪流后续相关研究及长白山松花江水系生态修复提供基础数据支持及参考。  相似文献   

16.
Hydraulic-habitat and biological data were integrated within a twofold-purpose study: (i) to investigate the response of freshwater macroinvertebrates to a rainfall-induced high flow event of moderate magnitude and (ii) to derive hydroecological relationships between habitat variability and macroinvertebrate microdistribution. 142 microhabitats (unique combinations of flow velocity, water depth and substrate type) allocated in four sites of no or very minor anthropogenic influence were sampled and analyzed, before and after the event. Freshwater macroinvertebrates were additionally collected and specific community metrics were derived. To identify possible pre- and post- impact benthic community differences, independent sample t-tests were applied, while Boosted Regression Tree models were developed to quantify the response of macroinvertebrates to flow alteration. Macroinvertebrate abundance, taxonomic richness, EPT richness and diversity decreased significantly by 90%, 60%, 50% and 25% respectively between the pre- and post- impact microhabitats. The relative abundance of macroinvertebrate predators and passive filter feeders increased after the event, mainly in specific substrate types (boulders and large stones), which served as flow refugia, maintaining less degraded (compared to finer substrates), still heavily impacted, benthic communities. According to the hydroecological analysis, the high flow event exerted the strongest impact on all macroinvertebrate metrics. Optimal (suitable) ranges of the hydraulic-habitat variables for benthic macroinvertebrates were identified (optimal flow velocity from 0.3 m/s to 0.7 m/s, optimal water depth at 0.2 m), while boulders and large stones were the most suitable substrate types. The aforementioned data provide valuable information for the provisioning of biologically-derived environmental flows and an essential input of hydrodynamic habitat models to facilitate the selection of the optimal environmental flow scenario towards ensuring the integrity of aquatic ecosystems downstream of anthropogenic activities provoking hydrological alteration.  相似文献   

17.
The analysis of the trophic structure of benthic macroinvertebrate communities can be used in biological assessments of the condition of river ecosystems. Using the trophic, or functional approach, the Index of Trophic Completeness (ITC) was developed. The goal was to overcome the problems and drawbacks of using conventional diversity or biotic indices in biological assessments of rivers, such as limitation to distinct geographical regions or focus on species richness without regard for ecosystem functioning. Following an extensive review of the literature on the trophic characteristics of benthic macroinvertebrates, a large number of species (±300) were characterized according to a number of trophic criteria: plant:animal ratio in the diet, feeding mechanism, food size, food acquisition behaviour, and energy and substance transfers. On the basis of their trophic characteristics, the species could be divided into 12 trophic groups. After examination of data from geographically diverse rivers, it was concluded that any undisturbed riverine benthic macroinvertebrate community should be represented by members of each of these 12 trophic groups, with each group fulfilling a function in the benthic community. Being a community which plays a central role in the functioning of the aquatic ecosystem, the benthic invertebrates are expected to respond to disturbances to the hydrobiocoenose. The outcome of an ITC assessment is clearly presentable in the form of a pie graph with 12 wedges, each representing one of the 12 defined trophic groups. Functionally complete communities are represented by 12 wedges; a blank wedge indicates that a trophic group is not represented. This paper describes the preliminary developments in the ITC method, its potential as a biological assessment method in rivers in different geographical zones, and presents examples of trial mappings of Russian and European rivers. The application of the ITC to these rivers demonstrated the absence of ITC trophic groups at sites under the influence of anthropogenic activity.  相似文献   

18.
19.
Community structure of benthic macroinvertebrates was studied in six first- through fourth-order streams in northeast France, to elucidate changes in richness, abundance, diversity and evenness of mesohabitat assemblages as a function of environmental conditions. Patch samples were subjected to multivariate analyses to determine: (i) relationships among seven indices describing community structure (structure parameters); (ii) relationships among seven environmental variables; (iii) the relationship between community structure and environmental characteristics of patches. Faunal data showed that indices measuring the distribution of individuals among taxa (evenness, dominance) and richness are prominent in describing the structure of macroinvertebrate communities of mesohabitats. The analysis of environmental data demonstrated a major differentiating ability of current velocity and strong inter-relations among in-stream hydraulic-dependent parameters in structuring the mesohabitat environment. The co-structure (= relationship) between community organization and environmental variables indicated that substrate may be a primary determinant of community structure. Current velocity and water depth emerged as secondary factors. Trends in community structure were closely related to the spatial variability of mesohabitats. Species richness increased with habitat heterogeneity. Total abundance increased with trophic potentialities of patches. Equitability and diversity seemed to increase with patch stability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The ecological responses of aquatic macrophytes and benthic macroinvertebrates to deep-release dams in three impounded rivers of the Henares River Basin (Central Spain) were studied, specially focusing on the effects of nutrient enrichment caused by deep releases on these two freshwater communities. Three sampling sites, one upstream and two downstream from the reservoir, were established in each impounded river. Sampling surveys to collect submersed macrophytes and benthic macroinvertebrates at each sampling site were carried out in spring–summer of 2009 and 2011. Water temperature tended to decrease downstream from dams, whereas nitrate and phosphate concentrations tended to increase. These abiotic changes, particularly the downstream nutrient enrichment, apparently affected the macrophyte and macroinvertebrate communities. In the case of submersed macrophytes, total coverage and taxa richness increased downstream from dams. In the case of benthic macroinvertebrates, total density and total biomass also increased downstream, but taxa richness tended to decrease. Scrapers appeared to be the macroinvertebrate feeding group most favored downstream from dams as a probable consequence of the positive effect of nutrient enrichment on periphyton and perilithon abundance. Nutrients would ultimately come from water runoff over agricultural lands and over semi-natural forests and pastures, being subsequently accumulated in the hypolimnion of reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号