首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1   总被引:26,自引:0,他引:26       下载免费PDF全文
The growth-suppressive properties of p53 are controlled by posttranslational modifications and by regulation of its turnover rate. Here we show that p53 can be modified in vitro and in vivo by conjugation to the small ubiquitin-like protein SUMO-1. A lysine residue at amino acid position 386 of p53 is required for this previously undescribed modification, strongly suggesting that this lysine residue serves as the major attachment site for SUMO-1. Unlike ubiquitin, attachment of SUMO-1 does not appear to target proteins for rapid degradation but rather, has been proposed to change the ability of the modified protein to interact with other cellular proteins. Accordingly, we provide evidence that conjugation of SUMO-1 to wild-type p53 results in an increased transactivation ability of p53. We suggest that posttranslational modification of p53 by SUMO-1 conjugation provides a novel mechanism to regulate p53 activity.  相似文献   

2.
Recent advances in gel-free, mass spectrometry-based proteomics have firmly established existence of serine phosphorylation, threonine phosphorylation, tyrosine phosphorylation and lysine acetylation on many bacterial proteins. Intriguingly, numerous proteins have been shown to be modified by both modifications, leading to the emerging concept of cross-talk between posttranslational modifications in bacteria. This concept is further supported by biological follow-up studies that are starting to reveal bacterial proteins and processes regulated by multiple modifications. In this review, we provide an overview of the large-scale studies involving protein phosphorylation and acetylation in bacteria and discuss some of the current examples of cross-talk between these and other bacterial modifications.  相似文献   

3.
The knowledge of brain protein metabolism is important in understanding nervous system brain function. Protein synthesis rates are high in young brain, decline rapidly at adult stages, and thereafter continue falling slowly with age. The breakdown of protein appears to follow a similar rate (1). Protein synthesis and degradation however, are only the two extremes of a complex phenomena which includes a variety of other protein modifications. Proteolytic cleavage is the most common covalent modification of proteins; probably all proteins that have been isolated were modified by proteolysis, since only few are found with the starting amino acid (methionine) attached. This suggests that most proteins were subject to one or more co- and/or posttranslational modifications (2). One of these posttranslational modifications is the arginylation of proteins, described 30 years ago, which now is being recognized as a widespread modification of proteins. In this review, the current status of posttranslational arginylation of brain proteins is discussed.  相似文献   

4.
The genetic encoding of synthetic or “non-natural” amino acids promises to diversify the functions and structures of proteins. We applied rapid codon-reassignment for creating Escherichia coli strains unable to terminate translation at the UAG “stop” triplet, but efficiently decoding it as various tyrosine and lysine derivatives. This complete change in the UAG meaning enabled protein synthesis with these non-natural molecules at multiple defined sites, in addition to the 20 canonical amino acids. UAG was also redefined in the E. coli BL21 strain, suitable for the large-scale production of recombinant proteins, and its cell extract served the cell-free synthesis of an epigenetic protein, histone H4, fully acetylated at four specific lysine sites.  相似文献   

5.
Protein posttranslational modifications critically regulate a range of physiological and disease processes. In addition to tyrosine, serine, and threonine phosphorylation, reversible N‐ε acylation and alkylation of protein lysine residues also modulate diverse aspects of cellular function. Studies of lysine acyl and alkyl modifications have focused on nuclear proteins in epigenetic regulation; however, lysine modifications are also prevalent on cytosolic proteins to serve increasingly apparent, although less understood roles in cell regulation. Here, the methyl‐lysine (meK) proteome of anucleate blood platelets is characterized. With high‐resolution, multiplex MS methods, 190 mono‐, di‐, and tri‐meK modifications are identified on 150 different platelet proteins—including 28 meK modifications quantified by tandem mass tag (TMT) labeling. In addition to identifying meK modifications on calmodulin (CaM), GRP78 (HSPA5, BiP), and EF1A1 that have been previously characterized in other cell types, more novel modifications are also uncovered on cofilin, drebin‐like protein (DBNL, Hip‐55), DOCK8, TRIM25, and numerous other cytoplasmic proteins. Together, the results and analyses support roles for lysine methylation in mediating cytoskeletal, translational, secretory, and other cellular processes. MS data for this study have been deposited into the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012217.  相似文献   

6.
7.
Tau undergoes numerous posttranslational modifications during the progression of Alzheimer's disease (AD). Some of these changes accelerate tau aggregation, while others are inhibitory. AD-associated inflammation is thought to create oxygen and nitrogen radicals such as peroxynitrite (PN). In vitro, PN can nitrate many proteins, including tau. We have previously demonstrated that tau's ability to form filaments is profoundly affected by treatment with PN and have attributed this inhibition to tyrosine nitration. However, PN is highly reactive and unstable leading to oxidative amino acid modifications through its free radical byproducts. To test whether PN can modify other amino acids in tau via oxidative modifications, a mutant form of the tau protein lacking all tyrosines (5XY → F) was constructed. 5XY → F tau readily forms filaments; however, like wild-type tau the extent of polymerization was greatly reduced following PN treatment. Since 5XY → F tau cannot be nitrated, it was clear that nonnitrative modifications are generated by PN treatment and that these modifications change tau filament formation. Mass spectrometry was used to identify these oxidative alterations in wild-type tau and 5XY → F tau. PN-treated wild-type tau and 5XY → F tau consistently displayed lysine formylation throughout tau in a nonsequence-specific distribution. Lysine formylation likely results from reactive free radical exposure caused by PN treatment. Therefore, our results indicate that PN treatment of proteins in vitro cannot be used to study protein nitration as it likely induces numerous other random oxidative modifications clouding the interpretations of any functional consequences of tyrosine nitration.  相似文献   

8.
无细胞体系非天然蛋白质合成研究进展   总被引:2,自引:0,他引:2  
高伟  卜宁  卢元 《生物工程学报》2018,34(9):1371-1385
无细胞非天然蛋白质合成作为蛋白质研究的新兴手段,已成功用于表征蛋白质分子间、蛋白质与核酸分子间相互作用等基础科学研究及医药蛋白、蛋白质材料等工业生产领域。无细胞非天然蛋白质合成系统不需维持细胞的生长,无细胞膜阻碍,可依据研究目的添加基因元件或化学物质从而增强工程设计和过程调控的自由性;也可赋予蛋白质新的特性、结构及功能,如可实现蛋白翻译后修饰、反应手柄引入、生物物理探针及多聚蛋白质合成等。文中系统地综述了目前应用于无细胞蛋白质合成系统中的非天然氨基酸嵌入方法,包括全局抑制及基于正交翻译体系的终止密码子抑制、移码抑制、有义密码子再分配和非天然碱基等方法的研究进展,及非天然氨基酸在蛋白质修饰、生物物理探针、酶工程、蛋白质材料以及医药蛋白质生产等领域的应用进展,并分析了该体系的发展前景及广泛工业化应用的机遇与挑战。  相似文献   

9.
Proteins synthesized during the preimplantation period of mouse embryogenesis were labeled with radioactive tyrosine and lysine and fractionated by electrophoresis on polyacrylamide disc gels containing sodium dodecyl sulfate. For interstage comparisons and comparisons of the incorporation of different amino acids at the same developmental stages, the embryos were incubated with either 3H- or 14C-labeled amino acids. The embryos were then combined, and the proteins were isolated and electrophoresed simultaneously. The data were analyzed with a dual isotope computer program and expressed in the form of 14C/3H ratios.Approximately 20–25 labeled protein components of apparent molecular weights between 25,000 and 115,000 can be defined, and 5 are most significant quantitatively. Of the latter, there are developmental increases in the rates of synthesis of 3 (with apparent molecular weights of 35,000 to 37,000, 37,000 to 41,000, and 66,000 to 70,000), a decrease in the rate of synthesis of another (53,000 to 57,000), and little change in the last (46,000 to 49,000). Developmental changes in the rates of synthesis of several other components are also demonstrated by the 14C/3H incorporation ratios. The relative amounts of the different proteins synthesized by day 3 (early blastocyst) embryos over an 8-hr period remain constant, as does the relative labeling by lysine and tyrosine at each developmental stage examined. Similarly, there is no change in the pattern of the radioactive proteins when day 2 (8–16 cell) embryos are labeled for 2 hr and then incubated for an additional 24 hr. The greatest change in the overall pattern of protein synthesis occurs quite early, between day 1 (2 cell) and day 2, and lesser changes occur at later stages. These findings are in contrast to the major change in the rate of protein synthesis which occurs after day 2.  相似文献   

10.
Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.  相似文献   

11.
We demonstrate that oxidized amino acids can be incorporated into proteins by protein synthesis. The level of incorporation into protein was dependent on the concentration of oxidized amino acid supplied to the cells. At low levels of incorporation, the oxidized amino acids examined increased the degradation rate of the cell proteins. Degradation of certain proteins containing high levels of DOPA (but not ortho or meta tyrosine) was decreased to below the basal degradation rates suggesting that DOPA may contribute to proteins becoming resistant to proteolysis. Changes in the degradation rates of the oxidized amino acid-containing proteins was shown to have no impact on the degradation rates of native proteins, indicating that the activity of the degradative machinery was not affected. We demonstrate that oxidized proteins are selectively degraded by the proteasomes and provide evidence to suggest that the proteasomes and the endosomal-lysosomal systems may act in sequence as well as in parallel. The incorporation approach, unlike cell studies in which an exogenous oxidant is used, allows the degradation rates of the oxidatively modified proteins to be selectively measured, offering a greater sensitivity as well as greatly reducing toxicity to the cell and avoiding oxidative modification of other cell components.  相似文献   

12.
《The Journal of cell biology》1984,98(4):1603-1605
Chinese hamster ovary (CHO) cells were subjected to severe amino acid starvation for histidine, leucine, methionine, asparagine, tyrosine, glutamine, valine, and lysine, using amino acid analogs or mutations in specific aminoacyl-tRNA synthetases. At protein synthetic rates of less than 5%, in all cases, the newly synthesized proteins were found on two- dimensional electrophoretic gels to consist of a few intensely labeled spots, with the exception of lysine. This pattern could also be produced by strong inhibition of cytoplasmic protein synthesis with cycloheximide, and was abolished by preincubation with the mitochondrial protein synthesis inhibitor chloramphenicol. It appears therefore that the spots represent mitochondrial protein synthesis and that animal cells must have separate aminoacyl-tRNA synthetases for mitochondrial tRNAs corresponding to all these amino acids except, possibly, for lysine.  相似文献   

13.
Electrospray ionization mass spectrometry, a leading method for the quantification of biomolecules, is useful for the analysis of posttranslational modifications of proteins. Here we describe a mass spectrometric approach for determining levels of acetylation at individual lysine residues within the amino-terminal tail of histone H4. Because of the high density of acetylatable lysine residues within this short span of amino acids, collision-induced dissociation tandem mass spectrometry was required. In addition, it was necessary to develop an algorithm to determine the fraction of acetylation at specific lysine residues from fragment ions containing more than one lysine residue. This is the first report of direct measurement of endogeneous levels of acetylation at individual lysine residues within the amino-terminal tail of yeast histone H4 and is the first use of tandem mass spectrometry for quantification of peptides containing multiple sites of modification.  相似文献   

14.
Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine, and tyrosine have been studied extensively, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins was discovered originally in prokaryotic organisms, but also has been found recently in eukaryotic cells. We describe methods for the synthesis and analysis of phosphohistidine-containing peptides, a prerequisite for the investigation of the role of this posttranslational modification in cellular processes.  相似文献   

15.
Protein biosynthesis is studied in red and white rat shank muscles in vitro. It is found that the incorporation rate of 14C-lysine in red muscle was 2-fold higher than that in white muscle. The difference in the lysine incorporation rate into muscle proteins studied increased with the increase of lysine molar concentration in the incubation medium, which was probably due to a selective protein synthesis activation in the red muscle. A higher level of 14C-lysine incorporation in red muscle proteins was found under similar uptake of the labelled amino acid in both red and white muscles. RNA synthesis rate was the same in both muscles and its inhibition with actinomycin D did not affect the ratio of protein synthesis rates in red and white muscles.  相似文献   

16.
In recent decades, chemical protein synthesis and the development of chemoselective reactions—including ligation reactions—have led to significant breakthroughs in protein science. Among them are a better understanding of protein structure‐function relationships, the study of protein posttranslational modifications, exploration of protein design, unnatural amino acid incorporation, and the study of therapeutic proteins and protein folding. Chalcogen chemistry, especially that of sulfur and selenium, is quite rich, and we have witnessed continuous progress in this field in recent years. In this short review, we will instead summarize three stories that we have recently presented on chalcogen chemistry and its impact on protein science, which was presented in the Miklós Bodanszky Award Lecture at the 35th European Peptide Society Meeting in Dublin, Ireland, 26 August 2018.  相似文献   

17.
Yeo WS  Lee SJ  Lee JR  Kim KP 《BMB reports》2008,41(3):194-203
Nitrosative modifications regulate cellular signal transduction and pathogenesis of inflammatory responses and neurodegenerative diseases. Protein tyrosine nitration is a biomarker of oxidative stress and also influences protein structure and function. Recent advances in mass spectrometry have made it possible to identify modified proteins and specific modified amino acid residues. For analysis of nitrated peptides with low yields or only a subset of peptides, affinity 'tags' can be bait for 'fishing out' target analytes from complex mixtures. These tagged peptides are then extracted to a solid phase, followed by mass analysis. In this review, we focus on protein tyrosine modifications caused by nitrosative stresses and proteomic methods for selective enrichment and identification of nitrosative protein modifications.  相似文献   

18.
 Free amino acids were determined in developing seed of a rice mutant with enhanced grain lysine. This phenotype frequently has enhanced protein. Some free amino acids of developing seed are inversely related to the level of total amino acids in proteins of the mature grain. Amino acids that were enhanced in protein, including aspartic acid, threonine, methionine and lysine, were notably lower in the free amino-acid pool. Our conclusion is that mutant-developing grains process aspartate amino acids more rapidly than the controls. Conversely, arginine, valine and glutamic acid/glutamine accumulate as free amino acids with mutant/control ratios of 1.39, 1.29 and 1.12, respectively. Glutamic acid/glutamine in proteins of mature seeds is lower in the mutant than the control. 3H-lysine incorporation showed enhanced isotope incorporation into at least four proteins. One mutant protein was less actively labelled than analogous controls. The 3Hlysine pattern indicates processing modifications in this useful rice mutant. Received: 14 October 1996/Accepted: 8 November 1996  相似文献   

19.
20.
The combination of proteomics with highly specific and sensitive affinity techniques is important for the identification of posttranslational modifications by reactive oxygen and nitrogen species (ROS/RNS). One of the most pressing problems with this approach is to determine accurately the extent of modification of specific amino acids, such as cysteine residues, in a complex protein sample. A number of techniques relevant to free radical biology use biotin tagging as a method to follow protein modification with high sensitivity and specificity. To realize the potential of this approach to provide quantitative data, we have prepared a series of biotinylated proteins through the modification of lysine residues. These proteins were then used as quantitative standards in electrophoretic separation of protein samples labeled with biotin-conjugated iodoacetamide. The utility of the approach was assessed by measuring modification of thiols in response to exposure to thiol oxidants, as well as the amount of protein adduct formation with a biotin-tagged electrophilic lipid. Furthermore, using a combination of native and biotin-tagged cytochrome c, this method was used to quantitate the amount of thiol relative to the amount of protein in a given spot on a two-dimensional gel. Thus, we have developed a versatile, cost-effective standard that can be used in proteomic methods to quantitate biotin tags in response to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号