首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Landscape homogenisation represents one of the gravest threats to the biodiversity of intensively farmed landscapes. In such landscapes, many species persist within remnants of (semi)natural habitats, such as in the steppe grasslands of Southern Moravia, SE Czech Republic. We investigated how the butterfly fauna of insular grassland reserves is affected by the heterogeneity of the surrounding farmland. We followed two lines of evidence, one based on species richness, the other on species community composition, considering two aspects of landscape heterogeneity, composition (amount of land cover types) and configuration (geometry of land cover patches). After statistically correcting for individual reserves characteristics, and within-reserves biotope composition, we found that reserves amidst heterogeneous landscapes contained more species. With increasing buffers around the reserves, the strength of the effects decreased for landscape composition, and increased for landscape configuration. Similar patterns applied for the butterfly assemblage composition, but in a rather subtle manner, not reflecting a specialist versus generalist dichotomy. However, more red-listed species inclined towards reserves amidst heterogeneous matrices. The species most tightly associated with heterogeneous landscapes were those whose populations likely span across multiple patches of relatively rare biotopes, whereas those indifferent to configuration were either those persisting at isolated sites, or those utilising common biotope types outside the reserves. The importance of landscape configuration suggests that relatively cheap restoration measures aimed at compartmentalisation the currently huge farmland units may substantially contribute to preserving biodiversity in intensively farmed regions.  相似文献   

2.
Quantitative methods for the design of reserve networks often select over‐dispersed reserves, and consequently a number of species extinctions can be expected in such reserves, especially if unprotected surrounding habitat is lost. A novel approach that deals with this problem is presented by considering factors such as habitat quality and spatial configuration of reserves during the selection process. Species‐specific effects of habitat loss and fragmentation, together with habitat composition, are taken into account when computing species probabilities of local occurrence. Sites are then chosen to represent all species with a given target probability. The method is applied to a dataset of butterflies and moths from the Creuddyn Peninsula, North Wales, UK, which includes species with various responses to habitat quality and configuration. The results show that the resulting level of reserve clustering will depend on the number of species for which the spatial configuration plays an important role (at the scale under consideration), and on the pattern and amount of habitat loss that is expected to follow around the reserves. The method represents a step towards taking better into account species persistence when selecting reserve networks in a changing world.  相似文献   

3.
Butterfly populations in two forest fragments at the Kenya coast   总被引:4,自引:0,他引:4  
Species richness, diversity and composition of butterflies in two Kenya coastal forest remnants, Muhaka and Mrima hill, were investigated. Sixty‐three species were recorded from each forest remnant from a total of 1329 individuals. Species accumulation curves for both forests did not reach an asymptote. High species similarity was recorded between the forest interior and the surrounding matrix, primarily due to invasion of the forest interior clearings by the savanna species. Despite their small sizes, these forest remnants were found to maintain viable populations of true forest butterflies. However, the number of species was less than half that recorded from the larger forest reserve of Arabuko‐Sokoke, located in the same geographical area. Records from Muhaka forest show species unique to it, not found in the larger forest reserves, underscoring the importance of small remnants in the preservation of forest biodiversity. The high species similarity between the forest remnants implied that if habitat corridors were created, gene flow between these remnants and other larger forest reserves would be possible. This would reduce the isolation of true forest butterfly populations within the remnants and potential local extinction.  相似文献   

4.
Reserves are being used increasingly to conserve fish communities and populations under threat from overfishing, but little consideration has been given to how fish behavior might affect reserve function. This review examines the implications of how fish use space, in particular the occurrence and size of home ranges and the frequency and direction of home range relocations. Examples are drawn primarily from the literature on coral reef fishes, but the principles apply to other habitats. Reserves can protect fish species only if individuals restrict their movements to a localized home range during at least part of the life cycle. Home range sizes increase with body size. In small reserves, a significant proportion of fish whose home ranges are centered within the reserve can be exposed to fishing mortality because their home ranges include non-reserve areas. Relocation of home ranges following initial settlement increases exposure to the fishery, especially if habitat selection is frequency-dependent. Distance, barriers, and costs of movement counter such redistribution. These considerations lead to predictions that population density and mean fish size (1) will form gradients across reserve boundaries with maxima in the center of the reserve and minima outside the reserve away from the boundary; (2) will increase rapidly in newly established reserves, only later providing spillover to adjacent fisheries as density-dependent emigration begins to take effect; and (3) will be higher in reserves that are larger and have higher area:edge ratios, more habitat types, natural barriers between reserve and non-reserve areas, and higher habitat quality inside than outside the reserve. (4) Species with low mobility and weak density-dependence of space use will show the greatest increase in reserves and the strongest benefit for population reproductive capacity, but those with intermediate levels of these traits will provide the greatest spillover benefit to nearby fisheries.  相似文献   

5.
Aim Classic island biogeographical theory predicts that reserves have to be large to conserve high biodiversity. Recent literature, however, suggests that habitat heterogeneity can counterbalance the effect of small reserve size. For savanna ungulates, body mass is said to drive habitat selection and facilitate species coexistence, where large species use a higher proportion of the landscape than smaller species, because a wider food quality tolerance allows them to use a higher diversity of habitat types. In this case, high habitat heterogeneity would facilitate diverse assemblages of different‐sized ungulates. Digestive physiology should further modify this relationship, because non‐ruminants have a wider diet tolerance than ruminants. We tested this hypothesis with an empirical dataset on distribution and habitat preference of different‐sized African grazers. Location Hluhluwe‐iMfolozi Park, Republic of South Africa. Methods We recorded herbivore dung and habitat type on 24 line transects varying between 4 and 11 km with a total length of 190 km to determine habitat selection and landscape distribution of six grazer species, three ruminants and three non‐ruminants. Results Larger ruminant grazers were more evenly distributed than smaller ruminants, had a more diverse use of habitats and used more low quality habitat. In contrast, non‐ruminant grazers were more evenly distributed than similar‐sized ruminants and body mass did not clearly influence diversity of habitat use and use of low quality habitat. Main conclusions We confirm that body mass influences diversity of habitat use of large herbivores but digestive strategy potentially modifies this relationship. Hence, habitat heterogeneity might facilitate herbivore diversity in savanna ecosystems and high heterogeneity might counterbalance the effects of fragmentation and declining reserve size. Concluding, processes that homogenize the landscape, such as fire (mis)management and artificial waterholes, might be as threatening to biodiversity as landscape fragmentation, especially for smaller ruminant herbivores.  相似文献   

6.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

7.
Abstract. 1. To determine whether rarity and decline is linked to organism ecology, associations have been examined between butterfly larval host‐plant competitive, stress‐tolerant, ruderal (C‐S‐R) strategies and butterfly biology. 2. Associations have been sought between mean C‐S‐R scores for larval host plants with butterfly life history, morphology and physiology variables, resource use, population attributes, geography, and conservation status. Comparisons are carried out across species and controlled for phylogenetic patterning. 3. Butterfly biology is linked to host‐plant strategies. An increasing tendency of a butterfly's host plants to a particular strategy biases that butterfly species to functionally linked life‐history attributes and resource breadth and type. In turn, population attributes and geography are significantly and substantially affected by host choice and the strategies of these host plants. 4. The greatest contrast is between butterfly species whose host plants are labelled C and R strategists and those whose host plants are labelled S strategists. Increasingly high host‐plant C and R strategy scores bias butterflies to rapid development, short early stages, multivoltinism, long flight periods, early seasonal emergence, higher mobility, polyphagy, wide resource availability and biotope occupancy, open, areally expansive, patchy population structures, denser distributions, wider geographical ranges, resistance to range retractions as well as to increasing rarity in the face of environmental changes. Increasing host‐plant S strategy scores have reversed tendencies, biasing those butterfly species to extended development times, fewer broods, short flight periods, smaller wing expanse and lower mobility, monophagy, restricted resource exploitation and biotope occupancy, closed, areally limited populations with typical metapopulation structures, sparse distributions, and limited geographical ranges, range retractions, and increased rarity. 5. Species with S strategy host plants are species vulnerable to current environmental changes and species of conservation concern.  相似文献   

8.
Even Tjrve 《Ecography》2002,25(1):17-24
This paper discusses species diversity in simple multi-habitat environments. Its main purpose is to present simple mathematical and graphical models on how landscape patterns affect species numbers. The idea is to build models of species diversity in multi-habitat landscapes by combining species-area curves for different habitats. Predictions are made about how variables such as species richness and species overlap between habitats influence the proportion of the total landscape each habitat should constitute, and how many habitats it should be divided into in order to be able to sustain the maximal number of species. Habitat size and numbers are the only factors discussed here, not habitat spatial patterns. Among the predictions are: 1) where there are differences in species diversity between habitats, optimal landscape patterns contain larger proportions of species rich habitats. 2) Species overlap between habitats shifts the optimum further towards larger proportions of species rich habitat types. 3) Species overlap also shifts the optimum towards fewer habitat types. 4) Species diversity in landscapes with large species overlap is more resistant to changes in landscape (or reserve) size. This type of model approach can produce theories useful to nature and landscape management in general, and the design of nature reserves and national parks in particular.  相似文献   

9.
We studied the habitat use and mobility of the Grayling butterfly (Hipparchia semele) and the Blue-Winged Grasshopper (Oedipoda caerulescens), two threatened insects within spatially structured blond and grey dunes in a nature reserve along the Belgian coast. Although both species occur in the same biotope, H. semele were more abundant in open, dynamic sites with a relatively high amount of bare sand, while O. caerulescens preferred sheltered, more stable environments with a lower amount of bare sand. Unlike H. semele, substrate use varied in accordance to body colouration in O. caerulescens, especially on cold days, with light-coloured animals being more abundant on sand and dark-coloured animals more abundant on moss. During a mark-recapture-study, we marked 493 Grayling butterflies and 1289 Blue-Winged Grasshoppers. On average, both sexes of H. semele were equally mobile (about 150 m/day; maximum recorded distance of about 1700 m) while male O. caerulescens were significantly more mobile than females (daily average 47 vs. 5 m; maximum distances observed for O. caerulescens were about 800 m). The importance of habitat heterogeneity (within and among patches) and the consequences of habitat use and mobility of both species for the conservation of typical coastal dune habitats are discussed. The complementary use of species-specific information to site-based management measures is advocated.  相似文献   

10.
Theory predicts that habitat fragmentation, including reduced area and connectivity of suitable habitat, changes multitrophic interactions. Species at the bottom of trophic cascades (host plants) are expected to be less negatively affected than higher trophic levels, such as herbivores and their parasitoids or predators. Here we test this hypothesis regarding the effects of habitat area and connectivity in a trophic system with three levels: first with the population size of the larval food plant Hippocrepis comosa, next with the population density of the monophagous butterfly species Polyommatus coridon and finally with its larval parasitism rate. Our results show no evidence for negative effects of habitat fragmentation on the food plant or on parasitism rates, but population density of adult P. coridon was reduced with decreasing connectivity. We conclude that the highly specialized butterfly species is more affected by habitat fragmentation than its larval food plant because of its higher trophic position. However, the butterfly host species was also more affected than its parasitoids, presumably because of lower resource specialization of local parasitoids which also frequently occur in alternative hosts. Therefore, conservation efforts should focus first on the most specialized species of interaction networks and second on higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号