首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
2.
Although an increased level of the prostate-specific antigen can be an indication for prostate cancer, other reasons often lead to a high rate of false positive results. Therefore, an additional serological screening of autoantibodies in patients’ sera could improve the detection of prostate cancer. We performed protein macroarray screening with sera from 49 prostate cancer patients, 70 patients with benign prostatic hyperplasia and 28 healthy controls and compared the autoimmune response in those groups. We were able to distinguish prostate cancer patients from normal controls with an accuracy of 83.2%, patients with benign prostatic hyperplasia from normal controls with an accuracy of 86.0% and prostate cancer patients from patients with benign prostatic hyperplasia with an accuracy of 70.3%. Combining seroreactivity pattern with a PSA level of higher than 4.0 ng/ml this classification could be improved to an accuracy of 84.1%. For selected proteins we were able to confirm the differential expression by using luminex on 84 samples. We provide a minimally invasive serological method to reduce false positive results in detection of prostate cancer and according to PSA screening to distinguish men with prostate cancer from men with benign prostatic hyperplasia.  相似文献   

3.
Prostatic acid phosphatase (PAP) and prostatic specific antigen (PSA) were measured by immunochemical methods using test preparations from two different companies. In 66 patients with benign hyperplasia of the prostate a good correlation was found only between PSA levels (orthogonal regression analysis: y = 1.77 x -0.68; r = 0.995). Discrimination analysis between benign hyperplasia and new prostatic cancer (28 patients), using ROC curves, revealed a sensitivity for prostatic cancer of about 30 percent using both PAP methods and of about 58 percent using both PSA methods at the 95-percentile of benign hyperplasia. The PSA methods were both more sensitive in detecting prostatic cancer than the PAP methods.  相似文献   

4.
高维蛋白质波谱癌症数据分析,一直面临着高维数据的困扰。针对高维蛋白质波谱癌症数据在降维过程中的问题,提出基于小波分析技术和主成分分析技术的高维蛋白质波谱癌症数据特征提取的方法,并在特征提取之后,使用支持向量机进行分类。对8-7-02数据集进行2层小波分解时,分别使用db1、db3、db4、db6、db8、db10、haar小波基,并使用支持向量机进行分类,正确率分别达到98.18%、98.35%、98.04%、98.36%、97.89%、97.96%、98.20%。在进一步提高分类识别正确率的同时,提高了时间率。  相似文献   

5.
6.
The protein chip surface enhanced laser desorption/ionisation (SELDI) technique is a highly versatile analytical mass spectrometry system with considerable potential for detection, identification and quantitation of protein complex mixtures. Astrocytoma is a tumour of the astrocytes with a very poor prognosis. There is no effective biomarker system for detection of astrocytoma. The SELDI technique was used to study differential protein expression in astrocytoma cells in comparison to normal brain astrocytes. Several novel proteins were found to be expressed in the astrocytoma cells, not present in the astrocytes.  相似文献   

7.
New gene expressed in prostate (NGEP) is a prostate-specific gene encoding either a small cytoplasmic protein (NGEP-S) or a larger polytopic membrane protein (NGEP-L). NGEP-L expression is detectable only in prostate cancer, benign prostatic hyperplasia and normal prostate. We have identified an HLA-A2 binding NGEP epitope (designated P703) which was used to generate T cell lines from several patients with localized and metastatic prostate cancer. These T cell lines were able to specifically lyse HLA-A2 and NGEP-expressing human tumor cells. NGEP-P703 tetramer binding assays demonstrated that metastatic prostate cancer patients had a higher frequency of NGEP-specific T cells when compared with healthy donors. Moreover, an increased frequency of NGEP-specific T cells was detected in the peripheral blood mononuclear cells of prostate cancer patients post-vaccination with a PSA-based vaccine, further indicating the immunogenicity of NGEP. These studies thus identify NGEP as a potential target for T cell-mediated immunotherapy of prostate cancer.  相似文献   

8.
We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry (MS) data and is demonstrated on four real datasets from complete, complex SELDI spectra of human blood serum. Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra of a complex protein mixture. Q5 employs a probabilistic classification algorithm built upon a dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it is noniterative and computes the optimal linear discriminant using closed-form equations. The optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra of human blood serum. Replicate experiments of different training/testing splits of each dataset are employed to verify robustness of the algorithm. The probabilistic classification method achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method outperforms previous full-spectrum complex sample spectral classification techniques and can provide clues as to the molecular identities of differentially expressed proteins and peptides.  相似文献   

9.
The adult prostate gland grows and develops under hormonal control while its physiological functions are controlled by the autonomic nervous system. The prostate gland receives sympathetic input via the hypogastric nerve and parasympathetic input via the pelvic nerve. In addition, the hypogastric and pelvic nerves also provide sensory inputs to the gland. This review provides a summary of the innervation of the adult prostate gland and describes the changes which occur with age and disease. Growth and development of the prostate gland is age dependent as is the occurrence of both benign prostate disease and prostate cancer. In parallel, the activity and influence of both the sympathetic and parasympathetic nervous system changes with age. The influence of the sympathetic nervous system on benign prostatic hyperplasia is well documented and this review considers the possibility of a link between changes in autonomic innervation and prostate cancer progression.  相似文献   

10.
Prostate-specific antigen (PSA) is a glycoprotein secreted by prostate epithelial cells. PSA is currently used as a marker of prostate carcinoma because high levels of PSA are indicative of a tumor situation. However, PSA tests still suffer from a lack of specificity to distinguish between benign prostate hyperplasia and prostate cancer. To determine whether PSA glycosylation could provide a means of differentiating between PSA from normal and tumor origins, N-glycan characterization of PSA from seminal fluid and prostate cancer cells (LNCaP cell line) by sequencing analysis and mass spectrometry was carried out. Glycans from normal PSA (that correspond to low and high pI PSA fractions) were sialylated biantennary complex structures, half of them being disialylated in the low pI PSA fraction and mostly monosialylated in the high pI PSA. PSA from LNCaP cells was purified to homogeneity, and its glycan analysis showed a significantly different pattern, especially in the outer ends of the biantennary complex structures. In contrast to normal PSA glycans, which were sialylated, LNCaP PSA oligosaccharides were all neutral and contained a higher fucose content. In 10-15% of the structures fucose was linked alpha1-2 to galactose, forming the H2 epitope absent in normal PSA. GalNAc was increased in LNCaP glycans to 65%, whereas in normal PSA it was only present in 25% of the structures. These carbohydrate differences allow a distinction to be made between PSA from normal and tumor origins and suggest a valuable biochemical tool for diagnosis and follow-up purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号