首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The present work reports on a structural analysis carried out through different computer simulations of a set of rhodopsin mutants with differential functional features in regard to the wild type. Most of these mutants, whose experimental features had previously been reported [Ramon et al. J Biol Chem 282, 14272-14282 (2007)], were designed to perturb a network of electrostatic interactions located at the cytoplasmic sides of transmembrane helices 3 and 6. Geometric and energetic features derived from the detailed analysis of a series of molecular dynamics simulations of the different rhodopsin mutants, involving positions 134(3.49), 247(6.30), and 251(6.34), suggest that the protein structure is sensitive to these mutations through the local changes induced that extend further to the secondary structure of neighboring helices and, ultimately, to the packing of the helical bundle. Overall, the results obtained highlight the complexity of the analyzed network of electrostatic interactions where the effect of each mutation on protein structure can produce rather specific features.  相似文献   

2.
Activation of family A G-protein-coupled receptors involves a rearrangement of a conserved interhelical cytoplasmic hydrogen bond network between the E(D)RY motif on transmembrane helix 3 (H3) and residues on H6, which is commonly termed the cytoplasmic “ionic lock.” Glu1343.49 of the E(D)RY motif also forms an intrahelical salt bridge with neighboring Arg1353.50 in the dark-state crystal structure of rhodopsin. We examined the roles of Glu1343.49 and Arg1353.50 on H3 and Glu2476.30 and Glu2496.32 on H6 on the activation of rhodopsin using Fourier transform infrared spectroscopy of wild-type and mutant pigments reconstituted into lipid membranes. Activation of rhodopsin is pH-dependent with proton uptake during the transition from the inactive Meta I to the active Meta II state. Glu1343.49 of the ERY motif is identified as the proton-accepting group, using the Fourier transform infrared protonation signature and the absence of a pH dependence of activation in the E134Q mutant. Neutralization of Arg1353.50 similarly leads to pH-independent receptor activation, but with structural alterations in the Meta II state. Neutralization of Glu2476.30 and Glu2496.32 on H6, which are involved in interhelical interactions with H3 and H7, respectively, led to a shift toward Meta II in the E247Q and E249Q mutants while retaining the pH sensitivity of the equilibrium. Disruption of the interhelical interaction of Glu2476.30 and Glu2496.32 on H6 with H3 and H7 plays its role during receptor activation, but neutralization of the intrahelical salt bridge between Glu1343.49 and Arg1353.50 is considerably more critical for shifting the photoproduct equilibrium to the active conformation. These conclusions are discussed in the context of recent structural data of the β2-adrenergic receptor.  相似文献   

3.
Abstract

The present work reports on a structural analysis carried out through different computer simulations of a set of rhodopsin mutants with differential functional features in regard to the wild type. Most of these mutants, whose experimental features had previously been reported [Ramon et al. J Biol Chem 282, 14272–14282 (2007)], were designed to perturb a network of electrostatic interactions located at the cytoplasmic sides of transmembrane helices 3 and 6. Geometric and energetic features derived from the detailed analysis of a series of molecular dynamics simulations of the different rhodopsin mutants, involving positions 134(3.49), 247(6.30), and 251(6.34), suggest that the protein structure is sensitive to these mutations through the local changes induced that extend further to the secondary structure of neighboring helices and, ultimately, to the packing of the helical bundle. Overall, the results obtained highlight the complexity of the analyzed network of electrostatic interactions where the effect of each mutation on protein structure can produce rather specific features.  相似文献   

4.
In structure-function studies on bovine rhodopsin by in vitro site-specific mutagenesis, we have prepared three mutants in the cytoplasmic loop between the putative transmembrane helices E and F. In each mutant, charged amino acid residues were replaced by neutral residues: mutant 1, Glu239----Gln; mutant 2, Lys248----Leu; and mutant 3, Glu247----Gln, Lys248----Leu, and Glu249----Gln. The mutant rhodopsin genes were expressed in monkey kidney (COS-1) cells. After the addition of 11-cis-retinal to the cells, the rhodopsin mutants were purified by immunoaffinity adsorption. Each mutant gave a wild-type rhodopsin visible absorption spectrum. The mutants were assayed for their ability to stimulate the GTPase activity of transducin in a light-dependent manner. While mutants 1 and 3 showed wild-type activity, mutant 2 (Lys248----Leu) was inactive.  相似文献   

5.
Little is known about the molecular mechanism of Schiff base hydrolysis in rhodopsin. We report here our investigation into this process focusing on the role of amino acids involved in a hydrogen bond network around the retinal Schiff base. We find conservative mutations in this network (T94I, E113Q, S186A, E181Q, Y192F, and Y268F) increase the activation energy (E(a)) and abolish the concave Arrhenius plot normally seen for Schiff base hydrolysis in dark state rhodopsin. Interestingly, two mutants (T94I and E113Q) show dramatically faster rates of Schiff base hydrolysis in dark state rhodopsin, yet slower hydrolysis rates in the active MII form. We find deuterium affects the hydrolysis process in wild-type rhodopsin, exhibiting a specific isotope effect of approximately 2.5, and proton inventory studies indicate that multiple proton transfer events occur during the process of Schiff base hydrolysis for both dark state and MII forms. Taken together, our study demonstrates the importance of the retinal hydrogen bond network both in maintaining Schiff base integrity in dark state rhodopsin, as well as in catalyzing the hydrolysis and release of retinal from the MII form. Finally, we note that the dramatic alteration of Schiff base stability caused by mutation T94I may play a causative role in congenital night blindness as has been suggested by the Oprian and Garriga laboratories.  相似文献   

6.
Shelden MC  Loughlin P  Tierney ML  Howitt SM 《Biochemistry》2003,42(44):12941-12949
The aim of this study was to identify charged amino acid residues important for activity of the sulfate transporter SHST1. We mutated 10 charged amino acids in or near proposed transmembrane helices and expressed the resulting mutants in a sulfate transport-deficient yeast strain. Mutations affecting four residues resulted in a complete loss of sulfate transport; these residues were D107 and D122 in helix 1 and R354 and E366 in helix 8. All other mutants showed some reduction in transport activity. The E366Q mutant was unusual in that expression of the mutant protein was toxic to yeast cells. The R354Q mutant showed reduced trafficking to the plasma membrane, indicating that the protein was misfolded. However, transporter function (to a low level) and wild-type trafficking could be recovered by combining the R354Q mutation with either the E175Q or E270Q mutations. This suggested that R354 interacts with both E175 and E270. The triple mutant E175Q/E270Q/R354Q retained only marginal sulfate transport activity but was trafficked at wild-type levels, suggesting that a charge network between these three residues may be involved in the transport pathway, rather than in folding. D107 was also found to be essential for the ion transport pathway and may form a charge pair with R154, both of which are highly conserved. The information obtained on interactions between charged residues provides the first evidence for the possible spatial arrangement of transmembrane helices within any member of this transporter family. This information is used to develop a model for SHST1 tertiary structure.  相似文献   

7.
Twenty-one single-cysteine substitution mutants were prepared in the sequence 56-75 between transmembrane helices I and II at the cytoplasmic surface of bovine rhodopsin. Each mutant was reacted with a sulfhydryl-specific reagent to produce a nitroxide side chain. The electron paramagnetic resonance of the labeled proteins in dodecyl maltoside solution was analyzed to provide the relative mobility and accessibility of the nitroxide side chain to both polar and nonpolar paramagnetic reagents. The results indicate that the hydrophobic-water interface of the micelle intersects helices I and II near residues 64 and 71, respectively. Thus, the sequence 64-71 is in the aqueous phase, while 56-63 and 72-75 lie in the transmembrane helices I and II, respectively. The lipid-facing surfaces on transmembrane helices I and II near the cytoplasmic surface correspond to approximately 180 degrees and 90 degrees of arc on the helical surfaces, respectively. Photoactivation of rhodopsin produced changes in structure in the region investigated, primarily around helix II. However, these changes are much smaller than those noted by spin labels in helix VI (Altenbach, C., Yang, K., Farrens, D., Farahbakhsh, Z., Khorana, H. G., and Hubbell, W. L. (1996) Biochemistry 35, 12470).  相似文献   

8.
Lewis JW  Szundi I  Kazmi MA  Sakmar TP  Kliger DS 《Biochemistry》2006,45(17):5430-5439
The role of ionizable amino acid side chains in the bovine rhodopsin activation mechanism was studied in mutants E134Q, E134R/R135E, H211F, and E122Q. All mutants exhibited bathorhodopsin stability on the 30 ns to 1 micros time scale similar to that of the wild type. Lumirhodopsin decay was also similar to that of the wild type except for the H211F mutant where early decay (20 micros) to a second form of lumirhodopsin was seen, followed by formation of an extremely long-lived Meta I(480) product (34 ms), an intermediate which forms to a much reduced extent, if at all, in dodecyl maltoside suspensions of wild-type rhodopsin. A smaller amount of a similar long-lived Meta I(480) product was seen after photolysis of E122Q, but E134Q and E134R/R135Q displayed kinetics much more similar to those of the wild type under these conditions (i.e., no Meta I(480) product). These results support the idea that specific interaction of His211 and Glu122 plays a significant role in deprotonation of the retinylidene Schiff base and receptor activation. Proton uptake measurements using bromcresol purple showed that E122Q was qualitatively similar to wild-type rhodopsin, with at least one proton being released during lumirhodopsin decay per Meta I(380) intermediate formed, followed by uptake of at least two protons per rhodopsin bleached on a time scale of tens of milliseconds. Different results were obtained for H211F, E134Q, and E134R/R135E, which all released approximately two protons per rhodopsin bleached. These results show that several ionizable groups besides the Schiff base imine are affected by the structural changes involved in rhodopsin activation. At least two proton uptake groups and probably at least one proton release group in addition to the Schiff base are present in rhodopsin.  相似文献   

9.
A low resolution model has been proposed for the exofacial conformation of the Glut1 glucose transporter in which eight transmembrane segments form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 4, predicted to be an inner helix in this structural model, was investigated by cysteine-scanning mutagenesis in conjunction with the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A functional, cysteine-less, parental Glut1 molecule was used to produce 21 Glut1 point mutants by individually changing each residue along transmembrane helix 4 to a cysteine. The single cysteine mutants were then expressed in Xenopus oocytes, and their expression levels, transport activities, and sensitivities to pCMBS were determined. In striking contrast to all of the other seven predicted inner helices, none of the 21 helix 4 single-cysteine mutants was demonstrably inhibited by pCMBS. However, cysteine substitution within helix 4 resulted in an unusually high number of severely transport-defective mutants. The low absolute transport activities of two of these mutants (G130C and G134C) were due to their extremely low levels of expression, presumably a result of structural instability and consequent degradation in oocytes, suggesting that these two residues play an important role in maintaining the native structure of Glut1. The other two transport-defective mutants (Y143C and E146C) exhibited low specific transport activities, implying that these two residues play an important role in the transport cycle. Based on these data, we conclude that the exoplasmic end of helix 4 lies outside the inner helical bundle in the exofacial configuration of Glut1.  相似文献   

10.
Rhodopsin is the visual photoreceptor responsible for dim light vision. This receptor is located in the rod cell of the retina and is a prototypical member of the G-protein-coupled receptor superfamily. The structural details underlying the molecular recognition event in transducin activation by photoactivated rhodopsin are of key interest to unravel the molecular mechanism of signal transduction in the retina. We constructed and expressed rhodopsin mutants in the second and third cytoplasmic domains of rhodopsin – where the natural amino acids were substituted by the human M3 acetylcholine muscarinic receptor homologous residues – in order to determine their potential involvement in G-protein recognition. These mutants showed normal chromophore formation and a similar photobleaching behavior than WT rhodopsin, but decreased thermal stability in the dark state. The single mutant V1383.53 and the multiple mutant containing V2275.62 and a combination of mutations at the cytoplasmic end of transmembrane helix 6 caused a reduction in transducin activation upon rhodopsin photoactivation. Furthermore, combination of mutants at the second and third cytoplasmic domains revealed a cooperative role, and partially restored transducin activation. The results indicate that hydrophobic interactions by V1383.53, V2275.62, V2506.33, V2546.37 and I2556.38 are critical for receptor activation and/or efficient rhodopsin–transducin interaction.  相似文献   

11.
Double-spin-labeled mutants of rhodopsin were prepared containing a nitroxide side chain at position 316 in the cytoplasmic surface helix H8, and a second nitroxide in the sequence of residues 60-75, which includes the cytoplasmic loop CL1 and cytoplasmic ends of helices TM1 and TM2. Magnetic dipole-dipole interactions between the spins were analyzed to provide interspin distance distributions in both the dark and photoactivated states of rhodopsin. In the dark state in solutions of dodecyl maltoside, the interspin distances are found to be consistent with structural models of the nitroxide side chain and rhodopsin, both derived from crystallography. Photoactivation of rhodopsin shows a pattern of increases in internitroxide distance between the reference, position 316 in H8, and residues in CL1 and TM2 that suggests an outward displacement of TM2 relative to H8 by approximately 3 A.  相似文献   

12.
The bacterial H+-pumping NADH-quinone oxidoreductase (NDH-1) is an L-shaped membrane-bound enzymatic complex. Escherichia coli NDH-1 is composed of 13 subunits (NuoA–N). NuoM (ND4) subunit is one of the hydrophobic subunits that constitute the membrane arm of NDH-1 and was predicted to bear 14 helices. We attempted to clarify the membrane topology of NuoM by the introduction of histidine tags into different positions by chromosomal site-directed mutagenesis. From the data, we propose a topology model containing 12 helices (helices I–IX and XII–XIV) located in transmembrane position and two (helices X and XI) present in the cytoplasm. We reported previously that residue Glu144 of NuoM was located in the membrane (helix V) and was essential for the energy-coupling activities of NDH-1 (Torres-Bacete, J., Nakamaru-Ogiso, E., Matsuno-Yagi, A., and Yagi, T. (2007) J. Biol. Chem. 282, 36914–36922). Using mutant E144A, we studied the effect of shifting the glutamate residue to all sites within helix V and three sites each in helix IV and VI on the function of NDH-1. Twenty double site-directed mutants including the mutation E144A were constructed and characterized. None of the mutants showed alteration in the detectable levels of expressed NuoM or on the NDH-1 assembly. In addition, most of the double mutants did not restore the energy transducing NDH-1 activities. Only two mutants E144A/F140E and E144A/L147E, one helix turn downstream and upstream restored the energy transducing activities of NDH-1. Based on these results, a role of Glu144 for proton translocation has been discussed.  相似文献   

13.
The melibiose carrier of Escherichia coli is a transmembrane protein that comprises 12 transmembrane helices connected by periplasmic and cytoplasmic loops, with both the N- and C-termini located on the cytoplasmic side. Our previous studies of second-site revertants suggested proximity between several helices, including helices XI and I. In this study, we constructed six double cysteine mutants, each having one cysteine in helix I and the other in helix XI: three mutants, K18C/S380C, D19C/S380C, and F20C/S380C, have their cysteine pairs near the cytoplasmic side of the carrier, and the other three, T34C/G395C, D35C/G395C, and V36C/G395C, have their cysteine pairs near the periplasmic side. In the absence of substrate, disulfide formations catalyzed by iodine and copper-(1,10-phenanthroline)(3) indicate that helix I and helix XI are in immediate proximity to each other on the periplasmic side but not on the cytoplasmic side, as shown by protease cleavage analyses. We infer that the two helices are tilted with respect to each other, with the periplasmic sides in close proximity.  相似文献   

14.
C S Yang  J L Spudich 《Biochemistry》2001,40(47):14207-14214
The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an alpha-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2-TM2' region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2-TM2' cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.  相似文献   

15.
As sensors for structure at the cytoplasmic face of rhodopsin, single-cysteine substitution mutants have been previously studied in the regions connecting helices III and IV and helices V and VI. In this paper we report on single-cysteine substitution mutants at amino acid positions 306-321, comprising the cytoplasmic sequence between helix VII and the palmitoylation sites in rhodopsin. The cysteine opsin mutants were expressed in COS-1 cells and on treatment with 11-cis-retinal all formed the characteristic rhodopsin chromophore. Cysteines at positions 306-316 and 319 reacted in the dark with the thiol-specific reagent 4, 4'-dithiodipyridine (4-PDS) but showed a wide variation in reactivity. Cysteines at positions 317, 318, 320, and 321 showed no reaction with 4-PDS. The mutants on illumination also showed wide variations in activating GT. The mutant Y306C showed almost no GT activation, I307C and N310C were poor, and the activity of the mutants M309C, F313C, and M317C was also reduced relative to WT. The results suggest that the region comprising amino acids 306-321 is a part of a tertiary structure and that specific amino acids in this region on light-activation participate in the interaction with GT.  相似文献   

16.
The visual pigment rhodopsin is a prototypical seven transmembrane helical G protein-coupled receptor. Photoisomerization of its protonated Schiff base (PSB) retinylidene chromophore initiates a progression of metastable intermediates. We studied the structural dynamics of receptor activation by FTIR spectroscopy of recombinant pigments. Formation of the active state, Meta II, is characterized by neutralization of the PSB and its counterion Glu113. We focused on testing the hypothesis of a PSB counterion switch from Glu113 to Glu181 during the transition of rhodopsin to the still inactive Meta I photointermediate. Our results, especially from studies of the E181Q mutant, support the view that both Glu113 and Glu181 are deprotonated, forming a complex counterion to the PSB in rhodopsin, and that the function of the primary counterion shifts from Glu113 to Glu181 during the transition to Meta I. The Meta I conformation in the E181Q mutant is less constrained compared with that of wild-type Meta I. In particular, the hydrogen bonded network linking transmembrane helices 1, 2, and 7, adopts a conformation that is already Meta II-like, while other parts of the receptor appear to be in a Meta I-like conformation similar to wild-type. We conclude that Glu181 is responsible, in part, for controlling the extraordinary high pK(a) of the chromophore PSB in the dark state, which very likely decreases upon transition to Meta I in a stepwise weakening of the interaction between PSB and its complex counterion during the course of receptor activation. A model for the specific role in coupling chromophore isomerization to protein conformational changes concomitant with receptor activation is presented.  相似文献   

17.
Spin-labeled double mutants of rhodopsin were produced containing a reference nitroxide at position 65, at the cytoplasmic termination of helix TM1, and a second nitroxide in the sequence of residues 306-319, which includes the cytoplasmic termination of helix TM7 and nearly the entire surface helix H8. Magnetic dipole-dipole interactions between the spins are analyzed to provide interspin distance distributions in both the dark and photoactivated states of rhodopsin. The distributions, apparently resulting from the conformational flexibility of the side chains, are found to be consistent with the structural model of rhodopsin in the dark state derived from crystallography. Photoactivation of the receptor triggers an increase in distance between residues in TM7, but not those in H8, relative to the reference at position 65 in TM1. The simplest interpretation of the result is a movement of the cytoplasmic portion of TM7 away from TM1 by 2-4 A.  相似文献   

18.
The signaling pathway of rhodopsin   总被引:1,自引:0,他引:1  
The signal-transduction mechanism of rhodopsin was studied by molecular dynamics (MD) simulations of the high-resolution, inactive structure in an explicit membrane environment. The simulations were employed to calculate equal-time correlations of the fluctuating interaction energy of residue pairs. The resulting interaction-correlation matrix was used to determine a network that couples retinal to the cytoplasmic interface, where transducin binds. Two highly conserved motifs, D(E)RY and NPxxY, were found to have strong interaction correlation with retinal. MD simulations with restraints on each transmembrane helix indicated that the major signal-transduction pathway involves the interdigitating side chains of helices VI and VII. The functional roles of specific residues were elucidated by the calculated effect of retinal isomerization from 11-cis to all-trans on the residue-residue interaction pattern. It is suggested that Glu134 may act as a "signal amplifier" and that Asp83 may introduce a threshold to prevent background noise from activating rhodopsin.  相似文献   

19.
The naturally occurring mutations G51A and G51V in transmembrane helix I and G89D in the transmembrane helix II of rhodopsin are associated with the retinal degenerative disease autosomal dominant retinitis pigmentosa. To probe the orientation and packing of helices I and II a number of replacements at positions 51 and 89 were prepared by using site-directed mutagenesis, and the corresponding proteins expressed in COS-1 cells were characterized. Mutations at position 51 (G51V and G51L) bound retinal like wild-type rhodopsin but had thermally destabilized structures in the dark, altered photobleaching behavior, destabilized metarhodopsin II active conformations, and were severely defective in signal transduction. The effects observed can be correlated with the size of the mutated side chains that would interfere with specific interhelical interaction with Val-300 in helix VII. Mutations at position 89 had sensitivity to charge, as in G89K and G89D mutants, which showed reduced transducin activation. G89K showed a second absorbing species in the UV region at 350 nm, suggesting a charge effect of the introduced lysine. Increased formation of non-active forms of rhodopsin, like metarhodopsin III, may have some influence in the molecular defect underlying retinitis pigmentosa in the mutants studied. At the structural level, the effect of the mutations analyzed can be rationalized assuming a very specific set of tertiary interactions in the interhelical packing of the transmembrane segments of rhodopsin.  相似文献   

20.
Energy profiles are calculated, using energy optimization computations, for a sodium cation in the AChR channel and four of its mutants, alpha E241D, beta E247Q, delta E255Q and alpha E241Q, using the model developed previously. The relative energy location of the calculated profiles confirms and specifies the role of each of the Glu residues found in the anionic ring at the bottom of the MII helices. The structural analysis of the results allows the understanding of the differences observed in the conductances for the wild-type and mutant alpha E241D, or for the mutants beta E247Q and delta E255Q in spite of the identity of the global charge of both channels in each couple. The striking correlation observed between the average relative energy location of the profiles and the conductance data appears to provide confirmation of the essential structural features adopted in the model, in particular the inclusion of the Glu(Gln in gamma)-Lys residues in the alpha-helical stretch of the MII helices and the overall location of the internal residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号