首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding S-adenosylhomocysteine hydrolase activity (SAHase: EC 3.3.1.1) from Corynebacterium efficiens (YS-314) was cloned and expressed as a fusion protein in Escherichia coli Rosetta (DE3). The analyzed nucleotide sequence of the cloned gene proved to be identical to those reported on the NCBI database. The recombinant enzyme is a tetramer, showing a molecular weight of approximately 210 kDa, as estimated by gel filtration. The K(M) values of the enzyme for S-adenosylhomocysteine (SAH), adenosine (Ado), and homocysteine (Hcy), were determined to be 1.4, 10, and 45 microM. The overexpression of the recombinant enzyme produced a high level of protein (>40 mg of protein per gram of wet cells) and revealed certain thermostability when characterized at temperatures above 40 degrees C. It also showed a high capacity for the synthesis of SAH, thermal stability, and high kinetic similarity to human SAHase, indicating a high biotechnological and pharmacological potential.  相似文献   

2.
Steroid monooxygenase of Rhodococcus rhodochrous is a Baeyer-Villigerase catalyzing the insertion of an oxygen atom between the C(17)- and C(20)-carbons of progesterone to produce testosterone acetate. The 5.1-kbp-long BamHI DNA fragment containing the steroid monooxygenase gene, smo, was cloned from the chromosomal DNA and sequenced. The smo gene is 1,650 nucleotides long, starts with a TTG codon, and ends with a TGA codon. The deduced amino acid sequence indicates that the enzyme protein consist of 549 amino acid residues with a molecular mass of 60,133. Thus, the molecular mass of the holoenzyme is 60,919. The amino acid sequence is highly homologous (41.2% identity) to that of cyclohexanone monooxygenase of Acinetobacter sp. In the upstream of the smo gene, the genes of heat shock proteins, dnaK, grpE, and dnaJ, located on the complementary strand, and the DNA-inserts of pSMO and pD1, which contains the ksdD gene, were joined at the BamHI site of the dnaJ gene. The smo gene was modified at the initiation codon to ATG and ligated with an expression vector to construct a plasmid, pSMO-EX, and introduced into Escherichia coli cells. The transformed cells hyperexpressed the steroid monooxygenase as an active and soluble protein at more than 40 times the level in R. rhodochrous cells. Purification of the recombinant monooxygenase from the E. coli cells by simplified procedures yielded about 2.3 mg of enzyme protein/g wet cells. The purified recombinant steroid monooxygenase exhibited indistinguishable molecular and catalytic properties from those of the R. rhodochrous enzyme.  相似文献   

3.
We report the characterization of the pyrimidine-specific ribonucleoside hydrolase from the hyperthermophilic archaeon Sulfolobus solfataricus (SsCU-NH). The gene SSO0505 encoding SsCU-NH was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. SsCU-NH is a homotetramer of 140 kDa that recognizes uridine and cytidine as substrates. SsCU-NH shares 34% sequence identity with pyrimidine-specific nucleoside hydrolase from E. coli YeiK. The alignment of the amino acid sequences of SsCU-NH with nucleoside hydrolases whose 3D structures have been solved indicates that the amino acid residues involved in the calcium- and ribose-binding sites are preserved. SsCU-NH is highly thermophilic with an optimum temperature of 100 degrees C and is characterized by extreme thermodynamic stability (T(m) = 106 degrees C) and kinetic stability (100% residual activity after 1 h incubation at 90 degrees C). Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is necessary for the integrity of the active site. The structure of the enzyme determined by homology modeling provides insight into the proteolytic analyses as well as into mechanisms of thermal stability. This is the first nucleoside hydrolase from Archaea.  相似文献   

4.
Overexpression of the Sulfolobus solfataricus L12 ribosomal protein gene in E.coli cells yielded two products of different size. If the E.coli cells carrying the overexpression plasmid were induced in the early stage of bacterial growth, the smaller of the two products was almost exclusively produced. However, induction in a late stage of bacterial growth yielded the larger product in significant excess. The larger protein was identified as the translation product of the entire SsoL12 gene, while the smaller product was a N-terminally shortened version of the L12 protein (sh-SsoL12), starting with a N-terminal methionine at position 22 of the coded protein and continuing with the predicted protein sequence. Position 22 is an isoleucine in the complete SsoL12 protein sequence, coded by an AUA codon. A subclone (SsoL12**) of the SsoL12 gene containing overexpression plasmid, lacking the regular AUG start codon and the putative Shine Dalgarno sequence, was constructed to determine if E.coli ribosomes could initiate at this AUA codon. During overexpression the SsoL12** construct yielded exclusively the sh-SsoL12 product in significant amounts. An AUA start codon has never been found before in a natural message. However, experiments utilizing site directed mutagenesis to generate AUA start codons showed that this codon can be functional for initiation in prokaryotes and eukaryotes. The findings presented in this paper show that AUA acts as an initiation codon in a natural message expressed in a heterologous organism.  相似文献   

5.
Covalently immobilized biotin was used as a biospecific adsorbant to investigate the application of streptavidin as an affinity domain for simultaneous purification and immobilization of recombinant proteins. A streptavidin-beta-galactosidase fusion protein was constructed and tested as a model system. The gene for streptavidin from Streptomyces avidinii was modified by polymerase chain reaction to mutate the stop codon and to facilitate cloning into an Escherichia coli expression vector yielding a versatile plasmid with 37 unique restriction enzyme sites at the 3' end. E. coli beta-galactosidase was cloned in-frame to the streptavidin gene. Analysis of lysates of induced recombinant E. coli cells by SDS-PAGE and Western blots indicated that the 133.6-kDa fusion protein was expressed. Sulfosuccinimidyl-6-(biotinamido) hexanoate was covalently immobilized on 3-aminopropyl-controled-pore glass beads. Exposure of recombinant cell lysates to this support indicated that streptavidin-beta-galactosidase was bioselectively adsorbed. The resulting biocatalyst contained 300 mg protein per gram of beads and exhibited a specific activity of 306 betamol/min per milligram protein with o-nitrophenyl-beta-D-galactopyranoside as substrate corresponding to approximately 50% of that observed for commercially pure E. coli beta-galactosidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
We used site-directed mutagenesis to introduce both a NdeI restriction endonuclease site and an initiator codon at the junction of the leader and structural gene sequences of the metallo-beta-lactamase of Bacillus cereus 5/B/6. This construct allowed us to clone just the beta-lactamase structural gene sequence into an Escherichia coli expression vector. E. coli cells were transformed with the recombinant plasmid, the B. cereus beta-lactamase was expressed, and these E. coli cells were disrupted by sonic oscillation. When the resultant suspensions were clarified by ultracentrifugation, the B. cereus beta-lactamase represented 15% of the total protein in the supernatant. Subsequent gel filtration and ion-exchange chromatography allowed the first reported purification to homogeneity of the B. cereus beta-lactamase from E. coli with an 87% recovery and an overall yield of 17 mg of enzyme per liter of cell culture. The electrophoretic mobilities of the enzyme expressed in and purified from E. coli and the enzyme purified directly from B. cereus were identical in both native and sodium dodecyl sulfate gel electrophoreses. As with the B. cereus enzyme, Km and Vmax (using cephalosporin C as substrate) for the enzyme purified from E. coli were 0.39 mM and 1333 units/mg protein, respectively. Likewise, the Co(II)-reconstituted enzyme purified from E. coli, which retained 29% of the activity of the Zn(II) enzyme, had electronic absorption spectra with maxima at 347, 551, 617, and 646 nm with extinction coefficients of 900, 250, 173, and 150 M-1 cm-1, respectively.  相似文献   

7.
A thermophilic and thermostable beta-galactosidase activity was purified to homogeneity from crude extracts of the archaebacterium Sulfolobus solfataricus, by a procedure including ion-exchange and affinity chromatography. The homogeneous enzyme had a specific activity of 116.4 units/mg at 75 degrees C with o-nitrophenyl beta-galactopyranoside as substrate. Molecular mass studies demonstrated that the S. solfataricus beta-galactosidase was a tetramer of 240 +/- 8 kDa composed of similar or identical subunits. Comparison of the amino acid composition of beta-galactosidase from S. solfataricus with that from Escherichia coli revealed a lower cysteine content and a lower Arg/Lys ratio in the thermophilic enzyme. A rabbit serum, raised against the homogeneous enzyme did not cross-react with beta-galactosidase from E. coli. The enzyme, characterized for its reaction requirements and kinetic properties, showed a thermostability and thermophilicity notably greater than those reported for beta-galactosidases from other mesophilic and thermophilic sources.  相似文献   

8.
Expression of human thymidylate synthase in Escherichia coli   总被引:4,自引:0,他引:4  
A cDNA clone encoding thymidylate synthase (TS) has been isolated from a human T-cell library and modified in the 5'-untranslated region to incorporate several unique cloning sites. The gene has been cloned as a cassette into several Escherichia coli expression vectors which did not provide detectable amounts of the enzyme. A successful approach used a constitutive E. coli expression vector developed for the enzyme from Lactobacillus casei. A 115-base pair 5'-untranslated region from the L. casei TS which contains a ribosomal binding site and other regulatory sequences has been fused to the coding region of the human TS gene to provide a construct that is expressed in E. coli. The level of expression was further enhanced by altering the nucleotide sequence of the first 90 base pairs to accommodate common codon use in E. coli. In our best expression system, catalytically active human TS is expressed to a level that represents about 1.6% of the total soluble protein. The recombinant human TS has been purified and characterized; except for the presence of an amino-terminal blocking group, the enzyme has physical and kinetic properties similar to the enzyme isolated from human cells.  相似文献   

9.
The gene encoding S-adenosylhomocysteine (AdoHcy) hydrolase in Leishmania donovani was subcloned into an expression vector (pPROK-1) and expressed in Escherichia coli. Recombinant L. donovani AdoHcy hydrolase was then purified from cell-free extracts of E. coli using three chromatographic steps (DEAE-cellulose chromatofocusing, Sephacryl S-300 gel filtration, and Q-Sepharose ion exchange). The purified recombinant L. donovani enzyme exists as a tetramer with a molecular weight of approximately 48 kDa for each subunit. Unlike recombinant human AdoHcy hydrolase, the catalytic activity of the recombinant L. donovani enzyme was shown to be dependent on the concentration of NAD+ in the incubation medium. The dissociation constant (Kd) for NAD+ with the L. donovani enzyme was estimated to be 2.1 +/- 0.2 microM. The Km values for the natural substrates of the enzyme, AdoHcy, Ado, and Hcy, were determined to be 21 +/- 3, 8 +/- 2, and 82 +/- 5 microM, respectively. Several nucleosides and carbocyclic nucleosides were tested for their inhibitory effects on this parasitic enzyme, and the results suggested that L. donovani AdoHcy hydrolase has structural requirements for binding inhibitors different than those of the human enzyme. Thus, it may be possible to eventually exploit these differences to design specific inhibitors of this parasitic enzyme as potential antiparasitic agents.  相似文献   

10.
A plasmid pAPP1 with a 4 kbp insert at the PstI site of pBR322, encoding aminopeptidase P gene of Escherichia coli HB101 (Yoshimoto et al. (1988) J. Biochem. 104, 730-734), was subcloned into pUC18 and pUC19. The transformant of E. coli JM83 harboring pAPP4 with a 1.9 kbp fragment showed more than 50-fold higher enzyme activity than that of the host, after cultivation at 37 degrees C for 40 h in LB-medium containing ampicillin. When the gene DNA was inserted reversely in pAPP4, the enzyme productivity decreased markedly. The whole nucleotide sequence of the inserted fragment of plasmid pAPP4 was clarified by the dideoxy chain-terminating method. Within this sequence, the mature enzyme protein-encoding sequence was found to start just after an ATG codon, as judged by comparison with amino-terminal protein sequencing. Eleven bases upstream from the proposed initiation codon was an AGGAGA sequence which seemed to be a ribosome binding site. Thirty-four bases upstream from the proposed start codon was the 6-base sequence TACAAA, the so-called -10 region or Pribnow box. Further, the 6-base sequence TTTACT around 77 bases upstream from the start codon was deduced to be a putative -35 region consensus sequence. The inverted repeat at 1334 was tentatively assumed to be a terminator. The molecular weight of the enzyme was estimated to be 49,650 from the nucleotide sequence. The purified enzyme contained 0.2 gram atom of zinc per subunit. The enzyme activity was inhibited by EDTA and activated 5-fold by Mn2+.  相似文献   

11.
目的 构建产天然防腐剂苯乳酸的工程菌。方法 分析超耐热菌(Aquifex aeolicus,A.aeolicus )D-乳酸脱氢酶(D-LDH)的三维构象,并与构建的可视化突变体三维模型进行对比,通过比较酶活性中心氨基酸残基与底物的空间构象,优选最佳模型进行定点突变,克隆、表达和苯乳酸发酵实验。结果 优选到F49A和Y297S两个单突变模型和一个F49A/Y297S双突变模型;分别进行定点突变和工程菌构建,三个突变工程菌,均能发酵产生苯乳酸。结论 可视化定点突变乳酸脱氢酶可作为构建高产苯乳酸工程菌的有效方法。  相似文献   

12.
A biosynthetic pathway for the production of (S)-3-hydroxybutyric acid (S3HB) from glucose was established in recombinant Escherichia coli by introducing the beta-ketothiolase gene from Ralstonia eutropha H16, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene from R. eutropha H16, or Clostridium acetobutylicum ATCC824, and the 3-hydroxyisobutyryl-CoA hydrolase gene from Bacillus cereus ATCC14579. Artificial operon consisting of these genes was constructed and was expressed in E. coli BL21 (DE3) codon plus under T7 promoter by isopropyl beta-D: -thiogalactoside (IPTG) induction. Recombinant E. coli BL21 (DE3) codon plus expressing the beta-ketothiolase gene, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene, and the 3-hydroxyisobutyryl-CoA hydrolase gene could synthesize enantiomerically pure S3HB to the concentration of 0.61 g l(-1) from 20 g l(-1) of glucose in Luria-Bertani medium. Fed-batch cultures of recombinant E. coli BL21 (DE3) codon plus were carried out to achieve higher titer of S3HB with varying induction time and glucose concentration during fermentation. Protein expression was induced by addition of 1 mM IPTG when cell concentration reached 10 and 20 g l(-1) (OD(600) = 30 and 60), respectively. When protein expression was induced at 60 of OD(600) and glucose was fed to the concentration of 15 g l(-1), 10.3 g l(-1) of S3HB was obtained in 38 h with the S3HB productivity of 0.21 g l(-1)h(-1). Lowering glucose concentration to 5 g l(-1) and induction of protein expression at 30 of OD(600) significantly reduced final S3HB concentration to 3.7 g l(-1), which also resulted in the decrease of the S3HB productivity to 0.05 g l(-1)h(-1).  相似文献   

13.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19), encoded by the aroA locus, is a target site of glyphosate inhibition in bacteria. A glyphosate-resistant aroA allele has been cloned in Escherichia coli from a mutagenized strain of Salmonella typhimurium. Subcloning of this mutant aroA allele shows the gene to reside on a 1.3-kilobase segment of S. typhimurium DNA. Nucleotide sequence analysis of this mutant gene indicates a protein-coding region 427 amino acids in length. Comparison of the mutant and wild type aroA gene sequences reveals a single base pair change resulting in a Pro to Ser amino acid substitution at the 101st codon of the protein. A hybrid gene fusion between mutant and wild type aroA gene sequences was constructed. 5-Enolpyruvylshikimate-3-phosphate synthase was prepared from E. coli cells harboring this construct. The glyphosate-resistant phenotype is shown to be associated with the single amino acid substitution described above.  相似文献   

14.
利用已成功高表达era基因的质粒pCE31翻译起始码上游的序列,去构建大肠杆菌新的外源基因表达载体。先合成特定序列的单链脱氧寡核苷酸,以改进的实验程序插入pJL6,其后再加上限制酶多克隆位点。所构建的pSM43和pSM53分别适合於不带翻译起始码(ATG)和带起始码的基因插入、表达非融合目的蛋白质之用。并已成功用於人肿瘤坏死因子、人骨形成蛋白、HIV蛋白酶、Duchenne肌营养不良等cDNA基因的高表达。  相似文献   

15.
The gene (tesB) encoding Escherichia coli thioesterase II, a low-abundance enzyme of unknown physiological function which can hydrolyze a broad range of acyl-CoA thioesters, has been localized by transposon mutagenesis, cloned and sequenced. A two-cistron construct containing both the lac and tesB promoters was used successfully to overexpress the 286-residue polypeptide. The recombinant enzyme constituted up to 25% of the soluble proteins of E. coli and was readily purified to homogeneity as a tetramer of approximately 120,000 Da. Amino-terminal sequence analysis and electrospray ionization mass spectrometry confirmed the identity of the thioesterase and revealed that the amino-terminal formyl-methionine had been removed yielding a subunit species of average molecular mass 31,842 Da. The protein does not contain the GXSXG motif found characteristically in animal thioesterases which function as chain-terminating enzymes in fatty acid synthesis and exhibits no sequence similarity with these or any other known proteins. Activity of the recombinant enzyme was inhibited by iodoacetamide and diethylpyrocarbonate. The carboxamidomethylated residue was identified as histidine 58, and a role for this amino acid in catalysis is suggested. E. coli strains having a large deletion within the genomic tesB gene grew normally but retained a low level of thioesterase activity toward decanoyl-CoA. This residual activity indicates the presence of an additional decanoyl-CoA hydrolase in E. coli. Over-expression of the recombinant enzyme, under control of the lac promoter, did not alter the fatty acids synthesized by E. coli at any stage of cell growth and the physiological role of this enzyme remains an enigma.  相似文献   

16.
A gene coding for adenylate kinase was cloned from an extremely thermoacidophilic archaeon Sulfolobus solfataricus. The open reading frame of the sequenced gene consisted of 585 nucleotides coding for a polypeptide of 195 amino acid residues with a calculated molecular weight of 21,325. Although the S. solfataricus adenylate kinase, which belonged to the small variants of the adenylate kinase family, had low sequence identities with bacterial and eukaryotic enzymes, a functionally important glycine-rich region and also two invariant arginine residues were conserved in the sequence of the S. solfataricus enzyme. The recombinant enzyme, overexpressed in Escherichia coli and purified to homogeneity, had high affinity for AMP and high thermal stability, comparable to the extremely thermostable enzyme from a similar archaeon, S. acidocaldarius. Furthermore, gel filtration and sedimentation analyses showed that the S. solfataricus adenylate kinase was a homotrimer in solution, which is a novel subunit structure for nucleoside monophosphate kinases.  相似文献   

17.
In contrast to Escherichia coli and yeast thioredoxin reductases, the human placental enzyme contains an additional redox center consisting of a cysteine-selenocysteine pair that precedes the C-terminal glycine residue. This reactive selenocysteine-containing center imbues the enzyme with its unusually wide substrate specificity. For expression of the human gene in E. coli, the sequence corresponding to the SECIS element required for selenocysteine insertion in E. coli formate dehydrogenase H was inserted downstream of the TGA codon in the human thioredoxin reductase gene. Omission of this SECIS element from another construct resulted in termination at UGA. Change of the TGA codon to TGT gave a mutant enzyme form in which selenocysteine was replaced with cysteine. The three gene products were purified using a standard isolation protocol. Binding properties of the three proteins to the affinity resins used for purification and to NADPH were similar. The three proteins occurred as dimers in the native state and exhibited characteristic thiolate-flavin charge transfer spectra upon reduction. With DTNB as substrate, compared to native rat liver thioredoxin reductase, catalytic activities were 16% for the recombinant wild type enzyme, about 5% for the cysteine mutant enzyme, and negligible for the truncated enzyme form.  相似文献   

18.
19.
20.
The gene encoding the type I pullulanase from the extremely thermophilic anaerobic bacterium Fervidobacterium pennavorans Ven5 was cloned and sequenced in Escherichia coli. The pulA gene from F. pennavorans Ven5 had 50.1% pairwise amino acid identity with pulA from the anaerobic hyperthermophile Thermotoga maritima and contained the four regions conserved among all amylolytic enzymes. The pullulanase gene (pulA) encodes a protein of 849 amino acids with a 28-residue signal peptide. The pulA gene was subcloned without its signal sequence and overexpressed in E. coli under the control of the trc promoter. This clone, E. coli FD748, produced two proteins (93 and 83 kDa) with pullulanase activity. A second start site, identified 118 amino acids downstream from the ATG start site, with a Shine-Dalgarno-like sequence (GGAGG) and TTG translation initiation codon was mutated to produce only the 93-kDa protein. The recombinant purified pullulanases (rPulAs) were optimally active at pH 6 and 80 degrees C and had a half-life of 2 h at 80 degrees C. The rPulAs hydrolyzed alpha-1,6 glycosidic linkages of pullulan, starch, amylopectin, glycogen, alpha-beta-limited dextrin. Interestingly, amylose, which contains only alpha-1,4 glycosidic linkages, was not hydrolyzed by rPulAs. According to these results, the enzyme is classified as a debranching enzyme, pullulanase type I. The extraordinary high substrate specificity of rPulA together with its thermal stability makes this enzyme a good candidate for biotechnological applications in the starch-processing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号