首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Parathyroid hormone-related protein (PTHrP) is expressed by a wide variety of cells and is considered to act as a secreted factor; however, evidence is accumulating for it to act in an intracrine manner. We have determined that PTHrP localizes to the nucleus at the G1 phase of the cell cycle and is transported to the cytoplasm when cells divide. PTHrP contains a putative nuclear localization sequence (NLS) (residues 61-94) similar to that of SV40 T-antigen, which may be implicated in the nuclear import of the molecule. We identified that Thr85 immediately prior to the NLS of PTHrP was phosphorylated by CDC2-CDK2 and phosphorylation was cell cycle-dependent. Mutation of Thr85 to Ala85 resulted in nuclear accumulation of PTHrP, while mutation to Glu85 to mimic a phosphorylated residue resulted in localization of PTHrP to the cytoplasm. Combined, the data demonstrate that the intracellular localization of PTHrP is phosphorylation- and cell cycle-dependent, and such control further supports a potential intracellular role (10,34,35) for PTHrP.  相似文献   

2.
Multiple mechanisms regulate subcellular localization of human CDC6   总被引:7,自引:0,他引:7  
CDC6 is a protein essential for DNA replication, the expression and abundance of which are cell cycle-regulated in Saccharomyces cerevisiae. We have demonstrated previously that the subcellular localization of the human CDC6 homolog, HsCDC6, is cell cycle-dependent: nuclear during G(1) phase and cytoplasmic during S phase. Here we demonstrate that endogenous HsCDC6 is phosphorylated during the G(1)/S transition. The N-terminal region contains putative cyclin-dependent kinase phosphorylation sites adjoining nuclear localization sequences (NLSs) and a cyclin-docking motif, whereas the C-terminal region contains a nuclear export signal (NES). In addition, we show that the observed regulated subcellular localization depends on phosphorylation status, NLS, and NES. When the four putative substrate sites (serines 45, 54, 74, and 106) for cyclin-dependent kinases are mutated to alanines, the resulting HsCDC6A4 protein is localized predominantly to the nucleus. This localization depends upon two functional NLSs, because expression of HsCDC6 containing mutations in the two putative NLSs results in predominantly cytoplasmic distribution. Furthermore, mutation of the four serines to phosphate-mimicking aspartates (HsCDC6D4) results in strictly cytoplasmic localization. This cytoplasmic localization depends upon the C-terminal NES. Together these results demonstrate that HsCDC6 is phosphorylated at the G(1)/S phase of the cell cycle and that the phosphorylation status determines the subcellular localization.  相似文献   

3.
4.
Expression of the recombinase proteins RAG-1 and RAG-2 is discordant: while RAG-1 is relatively long lived, RAG-2 is degraded periodically at the G(1)-S transition. Destruction of RAG-2 is mediated by a conserved interval in the recombination-dispensable region. The need for RAG-2 to reaccumulate in the nucleus at each cell division suggested the existence of an intrinsic RAG-2 nuclear localization signal (NLS). RAG-1 or RAG-2, expressed individually, is a nuclear protein. A screen for proteins that bind the recombination-dispensable region of RAG-2 identified the nuclear transport protein Importin 5. Mutation of residues 499 to 508 in RAG-2 abolished Importin 5 binding, nuclear accumulation, and periodic degradation of RAG-2. The Importin 5 binding site overlaps an NLS, defined by mutagenesis. RAG-1 rescued the localization of degradation-defective, RAG-2 NLS mutants; this required an intact RAG-1 NLS. Mutations in RAG-2 that abolish intrinsic nuclear accumulation but spare periodic degradation impaired recombination in cycling cells; induction of quiescence restored recombination to wild-type levels. Recombination defects were correlated with a cell cycle-dependent defect in the ability of RAG-1 to rescue localization of the RAG-2 mutants. These results suggest that the intrinsic RAG-2 NLS functions in the nuclear uptake of RAG-2 following its reexpression in cycling cells.  相似文献   

5.
Polo-like kinase 1 (Plk1), a mammalian ortholog of Drosophila Polo, is a serine-threonine protein kinase implicated in the regulation of multiple aspects of mitosis. The protein level, activity, and localization of Plk1 change during the cell cycle, and its proper subcellular localization is thought to be crucial for its function. Although localization of Plk1 to the centrosome has been established, nuclear localization or nucleocytoplasmic translocation of Plk1 has not been fully addressed. Here we show that Plk1 accumulates in both the nucleus and the cytoplasm in addition to its localization to the centrosome during S and G(2) phases. Our results identify a conserved region in the kinase domain of Plk1 (residues 134-146) as a functional bipartite nuclear localization signal (NLS) sequence that regulates nuclear translocation of Plk1. The identified NLS is necessary and sufficient for directing nuclear localization of Plk1. This bipartite NLS has an unusually short spacer sequence between two clusters of basic amino acids but is sensitive to RanQ69L, a dominant negative form of Ran, similar to ordinary bipartite NLS. Remarkably, the expression of an NLS-disrupted mutant of Plk1 during S phase was found to arrest the cells in G(2) phase. These results suggest that the bipartite NLS-dependent nuclear localization of Plk1 before mitosis is important for ensuring normal cell cycle progression.  相似文献   

6.
M D Mendenhall  C A Jones  S I Reed 《Cell》1987,50(6):927-935
A 40 kd polypeptide that coprecipitates with the CDC28 gene product in immune complexes is specifically phosphorylated by the CDC28 protein kinase. Using this reaction, we detect activity only in extracts from dividing G1 phase cells. Exit from G1 by entry into S phase or the preconjugatory state induced by mating pheromone correlates with loss of p40 phosphorylation activity. Inactive extracts from cdc28 mutants complement extracts from cells arrested in S or M phase, suggesting that non-G1 cells are deficient in an exchangeable activating factor. Stationary and pheromone-treated cultures are rich in this exchangeable factor, but possess an inactive kinase that is not activated by complementation. cAMP-deficient mutants resemble stationary cells.  相似文献   

7.
8.
The product of the CDC2Hs gene is the protein kinase subunit of the M-phase promoting factor, which is required for entry into mitosis. The activity of this kinase is regulated in a cell cycle-dependent manner by reversible phosphorylation and through association with other proteins. We report here that in HeLa cells, the abundance of the CDC2Hs mRNA and the rate of synthesis of the encoded protein, p34, vary in a cell cycle-dependent manner.  相似文献   

9.
The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast.   总被引:49,自引:0,他引:49  
K Nasmyth  L Dirick 《Cell》1991,66(5):995-1013
  相似文献   

10.
H P Rihs  D A Jans  H Fan    R Peters 《The EMBO journal》1991,10(3):633-639
We have previously demonstrated [Rihs, H.-P. and Peters, R. (1989) EMBO J., 8, 1479-1484] that the nuclear transport of recombinant proteins in which short fragments of the SV40 T-antigen are fused to the amino terminus of Escherichia coli beta-galactosidase is dependent on both the nuclear localization sequence (NLS, T-antigen residues 126-132) and a phosphorylation-site-containing sequence (T-antigen residues 111-125). While the NLS determines the specificity, the rate of transport is controlled by the phosphorylation-site-containing sequence. The present study furthers this observation and examines the role of the various phosphorylation sites. Purified, fluorescently labeled recombinant proteins were injected into the cytoplasm of Vero or hepatoma (HTC) cells and the kinetics of nuclear transport measured by laser microfluorimetry. By replacing serine and threonine residues known to be phosphorylated in vivo, we identified the casein kinase II (CK-II) site S111/S112 to be the determining factor in the enhancement of the transport. Either of the residues 111 or 112 was sufficient to elicit the maximum transport enhancement. The other phosphorylation sites (S120, S123, T124) had no influence on the transport rate. Examination of the literature suggested that many proteins harboring a nuclear localization sequence also contain putative CK-II sites at a distance of approximately 10-30 amino acid residues from the NLS. CK-II has been previously implicated in the transmission of growth signals to the nucleus. Our results suggest that CK-II may exert this role by controlling the rate of nuclear protein transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号