首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant single-chain urokinase-type plasminogen activator (rscu-PA), in which the plasmin-sensitive peptide bond Lys158-Ile159 is destroyed by site-specific mutagenesis of Lys158 to Glu (rscu-PA-Glu158), is quantitatively converted to two-chain urokinase-type plasminogen activator (rtcu-PA-Glu158) by treatment with endoproteinase Glu-C (Staphylococcus aureus V8 proteinase). The catalytic efficiency (k2/Km) of rscu-PA-Glu158 for the activation of plasminogen is 20 times lower (0.0001 microM-1 s-1) than that of rscu-PA (0.002 microM-1 s-1). In contrast, rtcu-PA-Glu158 has very similar properties to rtcu-PA obtained by digestion of rscu-PA with plasmin, including binding to benzamidine-Sepharose, catalytic efficiency for the activation of plasminogen (0.035 microM-1 s-1 versus 0.046 microM-1 s-1) and fibrinolytic activity in an in vitro plasma clot lysis system. It is concluded that the amino acid in position 158 is a main determinant of the functional properties of single-chain urokinase-type plasminogen activator but not of the two-chain form.  相似文献   

2.
The cDNA encoding full-length single chain urokinase-type plasminogen activator (scu-PA) was cloned and sequenced, and the recombinant scu-PA (rscu-PA) was expressed in Chinese hamster ovary cells. Two mutants, constructed by in vitro site-specific mutagenesis of Lys158 in rscu-PA to Gly158 (rscu-PA-Gly158) or to Glu158 (rscu-PA-Glu158), were also expressed in Chinese hamster ovary cells. Wild type and mutant rscu-PAs were purified to homogeneity by immunoadsorption on an insolubilized monoclonal antibody raised against natural scu-PA (nscu-PA), followed by gel filtration. The specific activity of the mutant scu-PAs on fibrin plates is very low (less than 1,000 IU/mg) compared to that of the wild type rscu-PA (44,000 IU/mg). The mutants, in contrast to the wild type rscu-PA, are not converted to amidolytically active two chain u-PA (tcu-PA) by plasmin and do not cause lysis of a 125I-fibrin-labeled plasma clot immersed in citrated plasma. However, in a purified system, both rscu-PA-Gly158 and rscu-PA-Glu158 activate plasminogen following Michaelis-Menten kinetics, with a much lower affinity (Km = 60-80 microM) but with a higher turnover rate constant (k2 = 0.01 s-1) as compared to the wild type rscu-PA (Km = 1.0 microM, k2 = 0.002 s-1). We conclude that conversion of scu-PA to tcu-PA is not a prerequisite for the activation of plasminogen. Substitution of Lys158 by Gly158 or Glu158 does, however, markedly decrease the stability of the Michaelis complex.  相似文献   

3.
The mechanism of the activation of plasminogen by single-chain urokinase-type plasminogen activator (single-chain u-PA, scu-PA) was studied using rscu-PA-Glu158, a recombinant plasmin-resistant mutant of human scu-PA obtained by site-specific mutagenesis of Lys158 to Glu, and rPlg-Ala740, a recombinant human plasminogen in which the catalytic site is destroyed by mutagenesis of the active-site Ser740 to Ala. Conversion of 125I-labeled single-chain plasminogen to two-chain plasmin was quantitated on reduced sodium dodecyl sulfate-gel electrophoresis combined with autoradiography and radioisotope counting of gels bands. The efficiencies of both rscu-PA-Glu158 and rscu-PA for the activation of rPlg-Ala740 and of natural plasminogen were comparable and were 250-500-fold lower than that of recombinant two-chain u-PA (rtcu-PA) for rscu-PA-Glu158 and 100-200-fold lower for rscu-PA. Pretreatment of rscu-PA-Glu158 or rscu-PA with excess alpha 2-antiplasmin, which efficiently neutralizes all contaminating rtcu-PA, did not significantly reduce the catalytic efficiency of these single-chain moieties, indicating that they have a low but significant intrinsic plasminogen activating potential. The low intrinsic catalytic efficiency of rscu-PA for the conversion of plasminogen to plasmin may be sufficient to generate trace amounts of plasmin, which may regulate plasminogen activation by converting poorly active rscu-PA to very active rtcu-PA.  相似文献   

4.
Thrombin converts single-chain urokinase-type plasminogen activator (scu-PA) to an inactive two-chain derivative (thrombin-derived tcu-PA) by hydrolysis of the Arg-156--Phe-157 peptide bond. In the present study, we show that inactive thrombin-derived tcu-PA (specific activity 1000 IU/mg) can be converted with plasmin to active two-chain urokinase-type plasminogen activator (specific activity 43,000 IU/mg) by hydrolysis of the Lys-158--Ile-159 peptide bond. This conversion follows Michaelis-Menten kinetics with a Michaelis constant Km of 37 microM and a catalytic rate constant k2 of 0.013 s-1. The catalytic efficiency (k2/Km) for the activation of thrombin-derived tcu-PA by plasmin is about 500-fold lower than that for the conversion of intact scu-PA to tcu-PA. tcu-PA, generated by plasmin treatment of thrombin-derived tcu-PA, has similar properties to tcu-PA obtained by digestion of intact scu-PA with plasmin (plasmin-derived tcu-PA); its plasminogen activating potential and fibrinolytic activity in an in vitro plasma clot lysis system appear to be unaltered. These observations confirm that the structure of the NH2-terminal region of the B chain of u-PA is an important determinant for its enzymatic activity, whereas that of the COOH-terminal region of the A chain is not.  相似文献   

5.
The contribution of the NH2-terminal polypeptide chain and of the Cys148-Cys279 interchain disulphide bond to the enzyme activity of urokinase-type plasminogen activator (u-PA) was studied using site-specific mutagenesis. Recombinant single-chain u-PA (rscu-PA) variants were produced by transfecting Chinese hamster ovary cells with cDNA encoding des(Asn2-Phe157)rscu-PA (rscu-PA with deletion of Asn2-Phe157), [Ala279]rscu-PA (rscu-PA with Cys279----Ala mutation) or des(Asn2-Phe157)[Ala279]rscu-PA [des(Asn2-Phe157)rscu-PA with Cys279----Ala mutation]. Des(Asn2-Phe157)rscu-PA, [Ala279]rscu-PA and des(Asn2-Phe157)[Ala279]rscu-PA, purified from conditioned cell culture medium, were obtained as nearly homogeneous single-chain molecules with Mr approximately 30,000, 54,000 and 30,000, and specific fibrinolytic activities on fibrin plates of (mean +/- SD; n = 3) 860 +/- 150 IU/mg, 43.0 +/- 2.5 IU/micrograms and 240 +/- 20 IU/mg, respectively, compared to 69.0 +/- 4.3 IU/micrograms for wild-type rscu-PA obtained in the same expression system. The plasminogen activating potential in a buffer milieu of [Ala279]rscu-PA was somewhat lower than that of rscu-PA, but that of both deletion mutants was virtually abolished. In a human plasma milieu in vitro, consisting of a radiolabelled human plasma clot submerged in plasma, 50% clot lysis in 2 h required 6.5 micrograms/ml [Ala279]rscu-PA or 3.4 micrograms/ml rscu-PA, whereas with both deletion mutants no significant clot lysis was observed with up to 16 micrograms/ml. Treatment of [Ala279]rscu-PA or rscu-PA with plasmin resulted in quantitative conversion to two-chain molecules and was associated with an increase in specific amidolytic activity from about 600 IU/mg to 62.5 IU/micrograms for [Ala279]rscu-PA as compared to an increase from about 0.3 IU/micrograms to 75.0 IU/micrograms for rscu-PA. In contrast, no significant amidolytic activity could be generated by treatment of des(Asn2-Phe157)rscu-PA or des(Asn2-Phe157)[Ala279]rscu-PA with plasmin. The u-PA B-chain, isolated from plasmin-treated [Ala279]rscu-PA, had enzymic properties which were comparable to those of rtcu-PA, with respect to specific fibrinolytic activity, amidolytic activity, kinetics of plasminogen activation and clot-lysis activity in a human plasma milieu in vitro. Following bolus injection into hamsters, the plasma clearances were comparable (0.7-1.1 ml/min) for wild-type rscu-PA and for the three truncated rscu-PA mutants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A low Mr form (Mr 32,000) of single-chain urokinase-type plasminogen activator (scu-PA) was isolated from conditioned culture medium of a human lung adenocarcinoma cell line, CALU-3 (ATCC, HTB-55). The purified material (scu-PA-32k) consists of a single polypeptide chain and is immunologically similar to Mr 33,000 urokinase. Its NH2-terminal sequence is identical to that beginning at Leu-144 of Mr 54,000 urokinase. Whereas low Mr urokinase is derived from mature Mr 54,000 scu-PA by limited hydrolysis by plasmin first of the Lys-158-Ile-159 peptide bond and then of the Lys-136-Lys-137, scu-PA-32k is generated by specific hydrolysis of the Glu-143-Leu-144 peptide bond by an unidentified protease. scu-PA-32k resembles its Mr 54,000 scu-PA counterpart by its very low activity on chromogenic substrates for urokinase, by plasminogen-dependent fibrinolytic activity on fibrin plates, and by the lack of specific binding to fibrin. It activates plasminogen directly with high affinity, Km = 0.9 microM, but low turnover number, kcat = 0.0028 s-1. It is converted to fully active two-chain urokinase by plasmin with Km = 12 microM and kcat = 0.3 s-1. Like Mr 54,000 scu-PA, it causes significant lysis of a 125I-labeled fibrin clot in human plasma with relatively less fibrinogen breakdown as compared to urokinase. scu-PA-32k, which also has conserved fibrin specificity, represents a molecular variant which may be more suitable for large scale production as a fibrin-specific thrombolytic agent by recombinant DNA technology.  相似文献   

7.
To mimic the sequence spanning the primary site (the Lys158-Ile159 bond) cleaved by plasmin in its conversion of single-chain urokinase plasminogen activator (scuPA) to urokinase, we synthesized the peptide Cys(Acm)-Leu-Arg-Pro-Arg-Phe-Lys-Ile-Ile-Gly-Gly-Glu-Phe-Cys [Cys(Acm)scuPA(153-164)Cys]. Immunization of A/J mice with the Cys(Acm)scuPA(153-164)Cys peptide linked to hemocyanin, followed by somatic cell fusion with a myeloma cell line (SP2/0), yielded a monoclonal antibody (SCOOP1) that bound to single-chain urokinase but not to urokinase or plasmin-treated single-chain urokinase. SCOOP1 could discriminate between single-chain urokinase and urokinase by greater than three orders of magnitude. In a radioimmunoassay, Cys(Acm)scuPA(153-164)Cys completely inhibited SCOOP1 binding to single-chain urokinase, whereas an equimolar mixture of two heptapeptides comprising the amino terminal [Cys-scuPA(153-158)] and carboxy terminal [scuPA(159-164)Cys)] halves of the cleavage site peptide did not. Thus the epitope recognized by SCOOP1 includes the Lys158-Ile159 peptide bond.  相似文献   

8.
K12G0S32 is a 57-kDa recombinant single-chain chimeric plasminogen activator consisting of scFv-K12Go, a single-chain variable-region antigen-binding fragment (Fv) of the monoclonal antibody MA-15C5, which is specific for fragment D-dimer of human cross-linked fibrin, and a low-molecular-mass (33 kDa) urokinase-type plasminogen activator (u-PA-33k) containing amino acids Ala132-Leu411 (Holvoet, P., Laroche, Y., Lijnen, H. R., Van Cauwenberghe, R., Demarsin, E., Brouwers, E., Matthyssens, G. & Collen D. (1991) J. Biol. Chem. 266, 19717-19724). In addition, the Arg156-Phe157 thrombin-cleavage site in the u-PA moiety of K12G0S32 is removed by substitution of Phe157 with Asp. In the present study, the fibrinolytic potency of K12G0S32, determined in a system composed of a 125I-fibrin-labeled human plasma clot submerged in citrated plasma, was found to be only twofold higher than that of intact single-chain u-Pa (rscu-PA), but 17-fold higher than that of rscu-PA(M), a variant of rscu-PA in which the thrombin-cleavage site was removed by substitution of Phe157 with Asp. The fibrinolytic potency of K12G0S32T, with an intact thrombin-cleavage site, was 6-15-fold higher than that of rscu-PA. Conversion of 1 microM single-chain K12G0S32 or rscu-PA(M) into their two-chain derivatives with plasmin occurred at a rate of 1.0 +/- 0.15 nmol.min-1.nmol plasmin-1 and 0.85 +/- 0.074 nmol.min-1.nmol plasmin-1, compared to 14 +/- 2.3 nmol.min-1.nmol plasmin-1 and 18 +/- 2.6 nM.min-1.nmol plasmin-1 for K12G0S32T and rscu-PA, respectively. Purified fragment D-dimer of human cross-linked fibrin inhibited the fibrinolytic potency of single-chain K12G0S32T, but not of two-chain K12G0S32T, in a dose-dependent manner. Furthermore, the fibrinolytic potencies of two-chain K12G0S32 and K12G0S32T were not significantly higher than those of recombinant two-chain u-PA (rtcu-PA) or of rtcu-PA(M). These findings suggest that the 59-fold increase in fibrinolytic potency of K12G0S32T, relative to that of rscu-PA(M), is due both to targeting of the activator to the clot via the single-chain Fv fragment (sixfold increase) and to a more efficient conversion of single-chain K12G0S32T to its two-chain derivative (eightfold increase). Thus, targeting to clots by means of fibrin-specific antibodies results in a significant increase of the fibrinolytic potency of single-chain but not of two-chain u-PA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Action of purified human cathepsin B on recombinant single-chain urokinase-type plasminogen activator (pro-uPA) generated enzymatically active two-chain uPA (HMW-uPA), which was indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot from plasmin-generated HMW-uPA and from elastase- or thrombin-generated inactive two-chain urokinase-type plasminogen activator. Preincubation of cathepsin B with E-64 (transepoxysuccinyl-L-leucylamino- (4-guanidino)butane, a potent inhibitor for cathepsin B) prior to the addition of pro-uPA prevented the activation of pro-uPA. The cleavage site within the cathepsin B-treated urokinase-type plasminogen activator (uPA) molecule, determined by N-terminal amino acid sequence analysis, is located between Lys158 and Ile159. Pro-uPA is cleaved by cathepsin B at the same peptide bond that is cleaved by plasmin or kallikrein. Binding of cathepsin B-activated pro-uPA to the uPA receptor on U937 cells did not differ from that of enzymatically inactive pro-uPA, indicating an intact receptor-binding region within the growth factor-like domain of the cathepsin B-treated uPA molecule. Not only soluble but also tumor cell receptor-bound pro-uPA could be efficiently cleaved by cathepsin B to generate enzymatically active two-chain uPA. Thus, cathepsin B can substitute for plasmin in the proteolytic activation of pro-uPA to enzymatically active HMW-uPA. In contrast, no significant activation of pro-uPA by cathepsin D was observed. As tumor cells may produce both pro-uPA and cathepsin B, implications for the activation of tumor cell-derived pro-uPA by cellular proteases may be considered.  相似文献   

10.
Plasma kallikrein was found to be a good activator of pro-urokinase, the inactive zymogen form of urokinase. The complete activation of pro-urokinase by plasma kallikrein was obtained in 2 h with an enzyme/substrate weight ratio of 1/30. The rate of activation of pro-urokinase by plasma kallikrein was comparable to that catalyzed by plasmin and trypsin. The rate of activation of pro-urokinase by factor XIIa was approximately one-seventh of that by plasma kallikrein. The activation of the zymogen was due to the cleavage of a single internal peptide bond, resulting in the conversion of a single chain pro-urokinase (Mr = 55,000) into two-chain urokinase (Mr = 33,000 and 22,000), and these two chains were linked by a disulfide bond(s). These results indicate an important role of plasma kallikrein for the activation of pro-urokinase in the factor XII-dependent intrinsic pathway of fibrinolysis. Thrombin also converted pro-urokinase to a two-chain form that was not activatable by plasmin, plasma kallikrein, and factor XIIa. Thrombin specifically cleaved the Arg 156-Phe 157 bond which is located 2 residues prior to the activation site of Lys 158-Ile 159.  相似文献   

11.
Tissue-type plasminogen activator (t-PA), the serine protease responsible for catalyzing the production of plasmin from plasminogen at the site of blood clots, is synthesized as a single-chain polypeptide precursor. Proteolytic cleavage at the C-terminal side of Arg275 generates a two-chain form of the enzyme whose subunits are held together by a single disulfide bond. We have measured the activities of both forms of the wild-type enzyme, as well as that of a mutant enzyme (Arg275----Gly), created by oligonucleotide-directed mutagenesis, that cannot be cleaved into a two-chain form. Both types of single-chain t-PAs are enzymatically active and exhibit identical Vmax and Km values when assayed with synthetic peptide substrates, indicating that the single amino acid change had no effect on the amidolytic activity of the enzyme. However, cleavage of wild-type t-PA into the two-chain form results in increased activity both on a peptide substrate and on the natural substrates Lys- and Glu-plasminogen in the absence or presence of stimulation by soluble fibrin. The enhanced activity is due to a 3-5-fold increase in the Vmax of the cleaved enzyme, rather than to any change in the Km values for the various substrates. During incubation with plasminogen, the single-chain form of wild-type t-PA is converted to the two-chain form by plasmin generated during the reaction. This conversion, from the less active form of the enzyme, results in a reaction that displays biphasic kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A hybrid human cDNA was constructed by splicing of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5'-untranslated, the pre-pro region and amino acids Ser1-Thr263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu144-Leu411. The cDNA fragments were obtained from full length t-PA cDNA, cloned from Bowes melanoma poly(A)+ mRNA, and from full length u-PA cDNA, cloned from CALU-3 lung adenocarcinoma poly(A)+ mRNA. The hybrid (t-PA/u-PA) cDNA was expressed in Chinese hamster ovary cells and the translation product purified from the conditioned cell culture media. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000. On immunoblotting, it reacted both with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity of the protein was only 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single-chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA). The specific activity of the protein on fibrin plates was 57,000 IU/mg by comparison with the International Reference Preparation for Urokinase. Both the single-chain hybrid (t-PA/scu-PA) and the two-chain plasmin derivative (t-PA/tcu-PA) bound specifically to fibrin, albeit more weakly than t-PA. The t-PA/tcu-PA hybrid had a higher selectivity for fibrin than tcu-PA, measured in a system composed of a whole human 125I-fibrin-labeled plasma clot immersed in human plasma. Both hybrid proteins activated plasminogen directly with Km = 1.5 microM and k2 = 0.0058 s-1 for t-PA/scu-PA and with Km = 80 microM and k2 = 5.6 s-1 for t-PA/tcu-PA. CNBr-digested fibrinogen stimulated the activation of plasminogen with t-PA/tcu-PA (Km = 0.20 microM and k2 = 1.2 s-1). It is concluded that these t-PA/u-PA hybrid proteins combine, at least to some extent, the fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), which in some assays result in improved fibrin-mediated plasminogen activation.  相似文献   

13.
An Mr 57,000 single-chain chimeric plasminogen activator, K12G0S32, consisting of a variable region fragment (Fv) derived from the fibrin fragment D-dimer-specific monoclonal antibody MA-15C5 and of a 33-kDa (amino acids Ala132 to Leu411) recombinant single-chain urokinase-type plasminogen activator (rscu-PA-33k) was studied. K12G0S32, secreted by infected Spodoptera frugiperda insect cells at a rate of 1.5 micrograms/10(6) cells/48 h, was purified to homogeneity by ion-exchange chromatography and gel filtration. It was obtained essentially as a single-chain molecule with a Ka = 5.5 x 10(9) M-1 for immobilized fragment D-dimer, similar to that of MA-15C5. The specific activity of both its single-chain and two-chain forms on fibrin plates was 100,000 IU/mg of urokinase-type plasminogen activator (u-PA) equivalent. Activation of plasminogen by two-chain K12G0S32 obeyed Michaelis-Menten kinetics with Km = 2.9 +/- 0.6 microM and a k2 = 3.7 +/- 0.6 s-1 (mean +/- S.D.; n = 3), as compared to Km = 12 microM and k2 = 4.8 s-1 for rtcu-PA-32k (recombinant low Mr two-chain u-PA consisting of amino acids Leu144 to Leu411). Single-chain K12G0S32 induced a dose- and time-dependent lysis of a 125I-fibrin-labeled human plasma clot immersed in citrated human plasma; 50% lysis in 2 h was obtained with 0.70 +/- 0.07 micrograms/ml (mean +/- S.D.; n = 5), as compared with 8.8 +/- 0.1 micrograms/ml for rscu-PA-32k (recombinant low Mr single-chain u-PA consisting of amino acids Leu144 to Leu411) (mean +/- S.D.; n = 3). With two-chain K12G0S32, 50% clot lysis in 2 h required 0.25 +/- 0.03 micrograms/ml (mean +/- S.D.; n = 3), as compared with only 0.62 +/- 0.04 micrograms/ml (mean +/- S.D.; n = 2) for rtcu-PA-32k. These results indicate that low Mr single-chain u-PA can be targeted to a fibrin clot with a single-chain Fv fragment of a fibrin-specific antibody, resulting in a 13-fold increase of the fibrinolytic potency of the single-chain form and a 2.5-fold increase of the potency of the two-chain form.  相似文献   

14.
根据尿激酶原与尿激酶一级结构的区别并结合计算机分子模拟,设计合成了包括尿激酶原Thr152-Glu163肽段的13肽,然后与载体蛋白KLH偶联作为免疫原,用BI林巴细胞融合技术获得了3种尿激酶原特异性单克隆抗体,这3种抗体仅与尿激酶原和合成多肽反应 ,而不与尿激酶及其结构类似物组织型纤溶酶原激活剂,凝血酶,纤维蛋白原反应,琼脂双向免疫扩散实验及酶活性抑制实验表明,3种抗体均为IgG类的IgG1亚类,所有3种抗体均不抑制酶活力,探讨了这组抗体用于尿激酶原结构与功能及其定量,定性分析研究方面的可能性。  相似文献   

15.
Jiao J  Yu M  Ru B 《Biochimie》2001,83(11-12):1049-1055
A recombinant chimeric plasminogen activator (f beta/scuPA-32k), with a fibrin beta-chain peptide (comprising Gly15 through Arg 42) linked to the N-terminal of a low molecular mass (32 kDa) single-chain urokinase (scuPA-32k, comprising Leu144 through Leu 411) via a 50 amino acid linker sequence, was produced by expression the corresponding chimeric cDNA in Escherichia coli cells. After refolding in vitro, the chimeric protein was purified to homogeneity by zinc chelate-Sepharose chromatography, Sephacryl S200 chromatography and benzamidine-Sepharose chromatography in sequence. The apparent molecular mass was 36 kDa shown by SDS-PAGE analysis. The special activity was 87,000 IU/mg detected by fibrin plate determination. F beta/scuPA-32k could directly activate plasminogen following Michaelis-Menten kinetics with K(m) = 0.52 microM and k(2) = 0.0024 s(-1). Mediated by plasmin, the single-chain molecule could be converted to the active two-chain molecule. The chimeric protein had 3.3 times higher fibrin affinity than scuPA-32k in the fibrin concentration of 3.2 mg/mL, while the chimeric protein inhibited the fibrin clotting and platelet aggregation. F beta/scuPA-32k showed a higher thrombolytic potency in vitro plasma clot lysis than scuPA-32k and depleted less fibrinogen in plasma. These results showed that the chimeric protein had not only higher fibrinolytic activity but also anti-thrombus activity. Further evaluation of the thrombolytic potential in appropriate animal models is required.  相似文献   

16.
Rabbit myelin basic protein (BP) was subjected to partial cleavage with plasmin, and 15 cleavage products were isolated by a combination of gel filtration and ion-exchange chromatography. Their identification was achieved by amino acid analysis and tryptic peptide mapping, supplemented in some instances by carboxy-terminal analyses with carboxypeptidases A, B, and Y and amino-terminal analyses with dipeptidyl aminopeptidase I. The results showed that major plasmic cleavage sites included the Lys89-Asn90, Lys133-Ser134, and Lys153-Leu154 bonds. Cleavages also occurred at the Arg31-His32, Lys53-Arg54, and Arg25-His26 bonds, but these appeared to be less extensive. A large number of additional peptides were produced in relatively low yield. The smaller of these were isolated from heterogeneous fractions by high-voltage electrophoresis-TLC. Amino acid analysis of these peptides showed that minor cleavage sites included the Arg9-His10, Lys13-Tyr14, Lys103-Gly104, Lys137-Gly138, Lys140-Gly141, and Arg160-Ser161 bonds. In spite of a lower selectivity toward peptide bonds in BP as compared with pepsin, cathepsin D, and thrombin, plasmin has the advantage over the former proteinases in that it does not cleave at or near the Phe44-Phe45 bond. Instead it cleaves at the Arg31-His32 and Lys53-Arg54 bonds, thus preserving the entire hydrophobic sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe as well as short sequences to either side.  相似文献   

17.
The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9), [Aca(-1),DArg0,Hyp3,Thi5,DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa(-1),DArg0,Hyp3,Thi5,(2-DNal)7,Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-d6 and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8 peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a beta-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N-Bzl)Gly8 in analogue 1 suggests type VI beta-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb beta-turn comprising residues Ser6-Arg9 and the betaI or betaII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I beta-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

18.
1. A cyclic hexapeptide, cyclo(-Gly2-Phe2-Gly-Lys-), and the corresponding open-chain hexapeptides, Gly2-Phe2-Gly-Lys and Phe-Gly-Lys-Gly2-Phe, have been synthesized and their susceptibilities to the hydrolytic action of pepsin and trypsin were determined. 2. The cyclic peptide was hydrolyzed slowly by trypsin to a hexapeptide Gly2-Phe2-Gly-Lys, the value of the Michaelis constant for this reaction being Km equals 0.00022 M. 3. The cyclic peptide was not cleaved by pepsin at all, but Gly2-Phe2-Gly-Lys was hydrolyzed rapidly at a Phe-Phe bond; Km equals 0.0091 M. 4. The cyclic peptide inhibits the hydrolysis of Gly2-Phe2-Gly-Lys by pepsin in a linear non-competitive manner, the value of the inhibition constant being Ki equals 0.004 M.  相似文献   

19.
Single-chain urokinase-type plasminogen activator (scu-PA) may be obtained from conditioned cell culture media (natural scu-PA) or by expression of the cDNA encoding human scu-PA in Escherichia coli (recombinant scu-PA). The activation of Glu-plasminogen by natural and recombinant scu-PA can be described by a sequence of three reactions, each of which obeys Michaelis-Menten kinetics. Initial activation of plasminogen to plasmin by scu-PA (reaction I) occurs with a high affinity (Km below 0.8 microM) for both scu-PAs, while the catalytic rate constant (k2) is 0.017 s-1 for recombinant scu-PA but only 0.0009 s-1 for natural scu-PA. Subsequent conversion of scu-PA to urokinase (two-chain urokinase-type plasminogen activator, tcu-PA) by generated plasmin (reaction II) occurs with a comparable affinity (Km about 5 microM) for natural and recombinant scu-PA and with a k2 of 0.23 s-1 for natural and 1.2 s-1 for recombinant scu-PA. Finally, activation of plasminogen by tcu-PA (reaction III) occurs with low affinity (Km 30-50 microM) but with a high catalytic rate constant (k2 about 5 s-1) for both natural and recombinant tcu-PA. The differences in the kinetic parameters of the activation of plasminogen by natural or recombinant scu-PA are thus mainly due to differences in turnover rate in the first reaction. Indeed, the catalytic rate constant of the first reaction is about 20-times higher for recombinant scu-PA than for natural scu-PA. Thus, surprisingly, the artificial, unglycosylated recombinant scu-PA molecule has a better catalytic efficiency than its natural glycosylated counterpart.  相似文献   

20.
Highly purified plasminogen-activator inhibitors of type 1 (PAI-1) and type 2 (PAI-2), low-Mr form, were compared with respect to their kinetics of inhibition of tissue-type (t-PA) and urokinase-type plasminogen activator (u-PA). The time course of inhibition of plasminogen activator was studied under second-order or pseudo-first-order conditions. Residual enzyme activity was measured by the initial rate of hydrolysis of a chromogenic t-PA or u-PA substrate or by an immunosorbent assay for t-PA activity. PAI-1 rapidly reacted with single-chain t-PA as well as with two-chain forms of t-PA and u-PA. The second-order rate constant k for inhibition of single-chain t-PA (5.5 x 10(6) M-1 s-1) was about three times lower than k for inhibition of the two-chain activators. PAI-2 reacted slowly with single-chain t-PA, k = 4.6 x 10(3) M-1 s-1. The association rate was 26 times higher with two-chain t-PA and 435 times higher with two-chain u-PA. The k values for inhibition of single-chain t-PA, two-chain t-PA and two-chain u-PA were respectively, 1200, 150 and 8.5 times higher with PAI-1 than with PAI-2. The removal of the epidermal growth factor domain and the kringle domain from two-chain u-PA did not affect the kinetics of inhibition of the enzyme, suggesting that the C-terminal proteinase part of u-PA (B chain) is responsible for both the primary and the secondary interactions with PAI-1 and PAI-2. The k values for inhibition of single-chain t-PA and endogenous t-PA in plasma by PAI-1 or PAI-2 were identical indicating that t-PA in blood consists mainly in its single-chain form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号