首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Jasmonic acid (JA) acts as a signal molecule to induce resistance in plants against herbivores and its levels are elevated in plants after wounding or insect damage. Groundnut is an important crop in many tropical and subtropical regions worldwide, but there is surprisingly little knowledge on its induced defenses against herbivores. The effect of JA as a spray on induced resistance in three groundnut genotypes, namely, ICGV 86699 (resistant), NCAc 343 (resistant), and TMV 2 (susceptible), against Helicoverpa armigera was studied. The activity of oxidative enzymes [peroxidase (POD) and polyphenol oxidase (PPO)] and the amounts of other host plant defense components [total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and protein content] were recorded at 24, 48, 72, and 96 h after pretreatment (1 day) with JA followed by infestation with H. armigera (PJA + HIN) and H. armigera infestation with simultaneous JA application (HIN + JA) to understand the consequences of induced resistance in groundnut. The plant damage, larval survival, and larval weights were also recorded. There was a significant increase in POD and PPO activities and in the amounts of total phenols, H2O2, MDA, and proteins in PJA + HIN- and JA + HIN-treated plants as compared to the plants treated with JA and infested with H. armigera individually and to untreated control plants. Among all the genotypes, the strongest induction of defense was observed in the ICGV 86699 genotype. It is concluded that pretreatment with JA and its application during low levels of insect infestation can increase the levels of host plant resistance against herbivorous insects and reduce the pest-associated losses in groundnut.  相似文献   

2.
Induced defense was studied in three groundnut genotypes ICGV 86699 (resistant), NCAc 343 (resistant) and TMV 2 (susceptible) in response to Spodoptera litura infestation and jasmonic acid (JA) application. The activity of the oxidative enzymes [peroxidase (POD) and polyphenol oxidase (PPO)] and the amounts other host plant defense components [total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA), and protein content] were recorded at 24, 48, 72 and 96 h in JA pretreated (one day before) plants and infested with S. litura, and JA application and simultaneous infestation with S. litura to understand the defense response of groundnut genotypes against S. litura damage. Data on plant damage, larval survival and larval weights were also recorded. There was a rapid increase in the activities of POD and PPO and in the quantities of total phenols, H2O2, MDA and protein content in the JA pretreated + S. litura infested plants. All the three genotypes showed quick response to JA application and S. litura infestation by increasing the defensive compounds. Among all the genotypes, higher induction was recorded in ICGV 86699 in most of the parameters. Reduced plant damage, low larval survival and larval weights were observed in JA pretreated plants. It suggests that pretreatment with elicitors, such as JA could provide more opportunity for plant defense against herbivores.  相似文献   

3.
Behavioural responses of Helicoverpa armigera egg parasitoid, Trichogramma chilonis and the larval parasitoid, Campoletis chlorideae towards the leaves of groundnut (Arachis hypogaea) genotypes (ICGV 86699, ICGV 86031, ICG 2271, and ICG 1697-resistant, and the susceptible check-JL 24) were studied by using a Y-tube olfactometer. Orientation was studied in comparison to clean air, to insect resistant genotypes in relation to JL 24 and towards H. armigera damaged and undamaged leaves. Leaves of ICGV 86699, ICGV 86031 and ICG 2271 were more attractive to T. chilonis adults than to the clean air. They were strongly attracted to the leaves of ICGV 86699, ICGV 86031 and ICG 1697 than of JL 24. Insect damaged leaves of ICGV 86699, ICGV 86031 and ICG 1697 were more attractive than the respective uninfested leaves. C. chlorideae showed greater attraction towards leaves of ICGV 86699, ICG 2271 and ICG 1697 than the clean air, and were more attracted towards leaves of ICGV 86699 and ICGV 86031 than those of JL 24. The damaged leaves of ICGV 86699, ICGV 86031 and ICG 2271 were more attractive to C. chlorideae than the respective uninfested leaves. Thus insect resistant genotypes exhibited greater compatibility with the natural enemies in groundnut.  相似文献   

4.
Induced resistance is one of the important components of host plant resistance to insects. We studied the induced defensive responses in groundnut genotypes with different levels of resistance to the leaf defoliator Helicoverpa armigera and the sap-sucking insect Aphis craccivora to gain an understanding of the induced resistance to insects and its implications for pest management. The activity of the defensive enzymes (peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, superoxide dismutase, ascorbate peroxidase, and catalase) and the amounts of total phenols, hydrogen peroxide, malondialdehyde, and proteins were recorded at 6 days after infestation. Induction of enzyme activities and the amounts of secondary metabolites were greater in the insect-resistant genotypes ICGV 86699, ICGV 86031, ICG 2271, and ICG 1697 infested with H. armigera and A. craccivora than in the susceptible check JL 24. The resistant genotypes suffered lower insect damage and resulted in lower Helicoverpa larval survival and weights than those larvae fed on the susceptible check JL 24. The number of aphids was significantly lower on insect-resistant genotypes than on the susceptible check JL 24. The results suggested that groundnut plants respond to infestation by H. armigera and A. craccivora in a similar way; however, the degree of the response differed across the genotypes and insects, and this defense response is attributed to various defensive enzymes and secondary metabolites.  相似文献   

5.
Salicylic acid (SA), a plant hormone plays an important role in induction of plant defense against a variety of biotic and abiotic stresses through morphological, physiological and biochemical mechanisms. A series of experiments were carried out to evaluate the biochemical response of the chickpea (Cicer arietinum L.) plants to a range of SA concentrations (1, 1.5, and 2 mM). Water treated plants were maintained as control. Activities of peroxidase (POD) and polyphenol oxidase (PPO) were evaluated and amounts of total phenols, hydrogen peroxide (H2O2), and proteins were calculated after 96 h of treatment. Plants responded very quickly to SA at 1.5 mM and showed higher induction of POD and PPO activities, besides the higher accumulation of phenols, H2O2 and proteins. Plants treated with SA at 2 mM showed phytotoxic symptoms. These results suggest that SA at 1.5 mM is safe to these plants and could be utilized for the induction of plant defense.  相似文献   

6.
Apple fruits are rich in phenolic compounds that may enhance resistance to grey mould disease caused by Botrytis cinerea. Using Malus domestica Borkh. cultivars Fuji and Qinguan, we analysed the contents of total phenols, total flavonoids, eight individual phenolic compounds, H2O2 and O2.? as well as the activities of key enzymes in the phenylpropanoid pathway in the flesh of control and B. cinerea‐inoculated fruits. Chlorogenic acid contents increased for a short period in the less susceptible cultivar Qinguan fruits, but decreased in the disease‐susceptible Fuji fruits. Additionally, ferulic acid production was induced in both cultivars in response to B. cinerea. Furthermore, the activities of phenylalanine ammonia lyase, cinnamate 4‐hydroxylase, 4‐coumarate:coenzyme A ligase and cinnamyl alcohol dehydrogenase were differentially induced between the two apple cultivars. Remarkably, the contents of H2O2 and O2.? as well as the activities of enzymes in phenolic metabolism tested in this study were always higher in Qinguan fruits than in Fuji fruits. Our data imply that phenylpropanoid metabolism is closely associated with apple fruit resistance to grey mould disease. These findings may be useful for characterizing the mechanism(s) underlying plant resistance to B. cinerea, with potential implications for the screening of grey mould disease‐resistant apple varieties in breeding programmes.  相似文献   

7.
The differences in the ability of the invading whitefly, Bemisia tabaci (Gennadius) (commonly known as biotype B and hereafter as B) and Trialeurodes vaporariorum (Westwood) (both Hemiptera: Aleyrodidae) to utilize salivary phenol‐oxidizing enzymes – polyphenol oxidase (PPO) and peroxidase (POD) to detoxify plant defensive phenolic compounds were explored. Polyphenol oxidase and POD were found in the saliva of both B and T. vaporariorum. For tomato colonies, the PPO and POD activities in the watery saliva of B were 2.27‐ and 1.34‐fold higher than those of T. vaporariorum. The PPO activities against specific phenolic compounds commonly found in plants were compared. The activities of those from B were significantly greater than those from T. vaporariorum. We also measured PPO activity in both species after they had fed on plants that were undamaged or had been previously damaged with either a plant pathogen [Phytophthora infestans (Mont.) de Bary (Peronosporales)] infection, mechanical damage, B infestation, or exogenous salicylic acid. For B, PPO activities in watery saliva increased 229, 184, 152, and 139% in response to the four treatments, whereas those of T. vaporariorum only increased 133, 119, 113, and 103%, respectively. Biotype B infestation significantly increased the total phenolic content of tomato leaves. Meanwhile, feeding on tomato infestation with B had no significant effect on the survival rate of B, but decreased the survival rate of T. vaporariorum significantly. These results suggest that B has stronger ability utilizing PPO to detoxify high concentrations of phenolics than T. vaporariorum, and this contributes to a significant advantage for B to hold high fitness on plants with induced resistance. Possible roles of salivary PPO in the competition between B and T. vaporariorum are discussed.  相似文献   

8.
以‘拉丁诺’白三叶(Trifolium repens cv.‘Ladino’)为试验材料,研究外源H2S处理对PEG6 000(聚乙二醇)模拟干旱胁迫下白三叶叶片相对含水量(RWC)、膜脂过氧化、活性氧成分、抗氧化酶、抗坏血酸-谷胱甘肽循环代谢和非酶抗氧化物质的影响,以揭示H_2S调控白三叶抗旱性的生理机制。结果显示:(1)0.2 mmol/L的外源NaHS(H_2S供体)能显著提高干旱胁迫下白三叶的叶片相对含水量,维持显著较低的电解质渗透率(EL)和丙二醛(MDA)含量。(2)与直接干旱胁迫相比,干旱胁迫下外源添加NaHS处理的白三叶叶片内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性显著增强,抗坏血酸-谷胱甘肽循环代谢中关键酶抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、单脱水抗坏血酸还原酶(MDHAR)和谷胱甘肽还原酶(GR)活性及其抗氧化中间产物抗坏血酸(AsA)、谷胱甘肽(GSH)含量也显著提高。(3)叶片类黄酮、总酚和原花青素的含量在一定的胁迫时间范围内亦显著增加,并伴随着活性氧成分O_2~(-·)产生速率和H_2O_2水平降低。研究认为,外源H2S能通过促进干旱胁迫下白三叶体内的多重抗氧化防御能力来提高其幼苗的抗旱性。  相似文献   

9.
Zhong  Ting-Ying  Yao  Gai-Fang  Wang  Sha-Sha  Li  Ting-Ting  Sun  Ke-Ke  Tang  Jun  Huang  Zhong-Qin  Yang  Feng  Li  Yan-Hong  Chen  Xiao-Yan  Hu  Lan-Ying  Zhang  Hua  Hu  Kang-Di 《Journal of Plant Growth Regulation》2021,40(6):2548-2559

As a signaling molecule, hydrogen sulfide (H2S) plays an indispensable role in the modulation of ripening and senescence in fruits and vegetables. To explore the role of H2S in regulating metabolism of postharvest tomato, ripening-related physiological parameters, activities of antioxidant enzymes and gene expression were analyzed in H2S-fumigated tomato fruits. These results show that H2S significantly delayed the color transition and softening of tomato fruit, and maintained higher level of flavonoids and lower level of anthocyanin during storage. Besides, H2S could maintain higher level of nutritional-related metabolites, such as reducing sugar, ascorbic acid during postharvest storage. Moreover, H2S decreased the rate of O2 production, inhibited the production of H2O2 and malondialdehyde (MDA), enhanced the activities of antioxidant enzymes including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) in tomato fruits, while reduced the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and lipoxygenase (LOX). Besides, the expression of the antioxidant-encoding genes SlCAT2, SlPOD12 was generally upregulated with H2S fumigation. Principal component analysis (PCA) suggests that H2S induced significant discrepancy mainly to the differences in firmness, anthocyanin, flavonoid and the activity of guaiacol peroxidase (POD), and the correlation analysis further shows that H2S affected pigment metabolism and nutritional quality. In conclusion, H2S could maintain better appearance and nutritional quality, and prolong the storage period of postharvest tomato fruits through activating the antioxidative system.

  相似文献   

10.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

11.
皇竹草活性氧代谢对阿特拉津胁迫的响应特征   总被引:3,自引:0,他引:3       下载免费PDF全文
张坤  李元  祖艳群  陈建军 《西北植物学报》2013,33(12):2479-2485
采用水培实验研究了4个浓度(5、10、20、40 mg·L-1)除草剂阿特拉津胁迫下,皇竹草(Pennisetum hydridum)叶片内超氧阴离子生成速率、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、丙二醛(MDA)含量、原生质膜透性的变化,探讨皇竹草对阿特拉津的抗性及其生理机制。结果显示:(1)低浓度(5、10 mg·L-1)的阿特拉津胁迫使皇竹草叶片内超氧阴离子生成速率和CAT活性升高,却使H2O2含量及SOD和POD活性降低,但随着培养时间的延长,培养液中阿特拉津浓度的降低导致上述指标又有恢复到正常水平的趋势;而高浓度(40 mg·L-1)的阿特拉津胁迫则使皇竹草叶片内H2O2含量、SOD、POD和CAT活性持续降低。(2)在各胁迫浓度下持续胁迫10 d后,皇竹草叶片内MDA含量开始逐渐升高,并且升高幅度随着胁迫浓度的提高而明显增加,但各胁迫浓度下叶片原生质膜相对透性未见明显的变化。研究表明,皇竹草可能通过活性氧等信号分子调控自身保护酶系统的活性来缓解阿特拉津造成的伤害,从而对低浓度(5、10 mg·L-1)的阿特拉津胁迫表现出较强抗性。  相似文献   

12.
  • The research conducted including its rationale: Spodoptera litura is the major pest of tomato causing significant reduction in tomato yield. Application of Plant growth promoting rhizobacteria(PGPR) prevent use of chemical fertilizer and synthetic pesticides through enhancement of plant growth and yield and induction of systemic resistance. Present investigation is an attempt to evaluate the role of PGPR, Pseudomonas putida and Rothia sp. on the physiology and yield of tomato fruit infested with the S. litura.
  • Central methods applied : The surface sterilized seeds of tomato were inoculated with 48 h culture of P. putida and Rothia sp. At 6–7 branching stage of the plant, the larvae of S. litura at 2nd in star was used to infect the tomato plant leaves.
  • Key results: The S. litura infestation decreased dry weight of shoots and roots by 46% and 22%, and significant reduction was recorded in tomato fruit yield. The P. putida and Rothia sp. inoculations alleviated the adverse effects of insect infestation and resulted in 60% increase in plant biomass and 40% increase in yield over infested plants.
  • Main conclusions including key points of discussion: PGPR: Defense appears to be mediated via increase in proline production, enhanced activities of antioxidant enzymes, stimulation in the activities of protease and polyphenol oxidases, increased contents of phenolics, protein and chlorophyll. The formulation of biopesticide involving PGPR comprise an environment friendly and sustainable approach to overcome insect infestation.
  相似文献   

13.
Abstract

The mechanism of growth amelioration in salt-stressed maize (Zea mays L. cv., DK 647 F1) by exogenously applied mannitol (M) and thiourea (T) was investigated. Maize seedlings were planted in pots containing perlite and subjected to 0 or 100 mM NaCl in full strength Hoagland's nutrient solution. Two levels of M (15 and 30 mM) or T (3.5 and 7.0 mM) were sprayed to the leaves of maize seedlings 10 days after germination. Salinity stress caused considerable reduction in plant dry biomass, chlorophyll content, and relative water content in the maize plants. However, it increased the activities of catalase (CAT; EC 1.11.1.6), superoxide dismutase (SOD; EC 1.15.1.1), and polyphenol oxidase (PPO; EC 1.10.3.1), and levels of hydrogen peroxide (H2O2) and electrolyte leakage, but it did not change peroxidase (POD; EC 1.11.1.7) activity. Foliar application of M or T was found to be effective in checking salt-induced shoot growth inhibition. Exogenously applied M or T reduced the activities of CAT, SOD, POD, and PPO in the salt-treated maize plants compared to those in the plants not fed with these organic compounds. Salinity increased Na+ contents but decreased those of K+, Ca2 +, and P in the leaves and roots of the maize plants. Foliar-applied M or T increased the contents of K+, Ca2 +, and P, but decreased that of Na+ in the salt-stressed maize plants with respect to those of the salt-stressed plants not supplied with mannitol or thiourea. Mannitol was found to be more effective than thiourea in improving salinity tolerance of maize plants in terms of growth and physiological attributes measured in the present study.  相似文献   

14.
The effect of proline on the antioxidant system in the leaves of eight species of wild almond (Prunus spp.) exposed to H2O2-mediated oxidative stress was studied. The levels of endogenous proline (Pro) and hydrogen peroxide, and the activities of total superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (POD) were measured. The degradation of chlorophyll but not carotenoids occurred in leaves in the solution of 5 mM H2O2. An increase in membrane lipid peroxidation was observed in H2O2 treatment, as assessed by MDA level and percentage of membrane electrolyte leakage (EL). Significant increases in total SOD and CAT activities, as well as decreases in APX and POD activities, were detected in H2O2-treated leaves. The three SOD isoforms showed different behavior, as Mn-SOD activity was enhanced by H2O2, whereas Fe-SOD and Cu/Zn-SOD activities were inhibited. In addition, Pro accumulation up to 0.1 ??mol/g fr wt, accompanied by significant decreases in ascorbate and glutathione levels, was observed in H2O2-treated leaves. After two different treatments with 10 mM Pro + 5 mM H2O2, total SOD and CAT activities were similar to the levels in control plants, while POD and APX activities were higher if compared to the leaves exposed only to H2O2. Pro + H2O2 treatments also caused a strong reduction in the cellular H2O2 and MDA contents and EL. The results showed that Pro could have a key role in protecting against oxidative stress injury of wild almond species by decreasing membrane oxidative damage.  相似文献   

15.
Lin  Chuan Chi  Kao  Ching Huei 《Plant and Soil》2001,230(1):135-143
The changes in cell-wall peroxidase (POD) activity and H2O2 level in roots of NaCl-stressed rice seedlings and their correlation with root growth were investigated. Increasing concentrations of NaCl from 50 to 150 mM progressively reduced root growth and increased ionically bound cell-wall POD activity. NaCl had no effect on covalently bound cell-wall POD activities. The reduction of root growth by NaCl is closely correlated with the increase in H2O2 level. Exogenous H2O2 was found to inhibit root growth of rice seedlings. Since ammonium and proline accumulation are associated with root growth inhibition caused by NaCl, we determined the effects of NH4Cl or proline on root growth, cell-wall POD activity and H2O2level in roots. External application of NH4Cl or proline markedly inhibited root growth, increased cell-wall POD activity and increased H2O2 level in roots of rice seedlings in the absence of NaCl. An increase in cell-wall POD activity and H2O2 level preceded inhibition of root growth caused by NaCl, NH4Cl or proline. NaCl or proline treatment also increased NADH-POD and diamine oxidase (DAO) activities in roots of rice seedlings, suggesting that NADH-POD and DAO contribute to the H2O2 generation in the cell wall of NaCl- or proline-treated roots. NH4Cl treatment increased NADH-POD activity but had no effect on DAO activity, suggesting that NADH-POD but not DAO is responsible for H2O2 generation in cell wall of NH4Cl-treated roots.  相似文献   

16.
Abscisic acid (ABA) and hydrogen peroxide (H2O2) are important regulatory factors involved in plant development under adversity stress. Here, the involvement of H2O2 in ABA-induced adventitious root formation in cucumber (Cucumis sativus L.) under drought stress was determined. The results indicated that exogenous ABA or H2O2 promoted adventitious rooting under drought stress, with a maximal biological response at 0.5 μM ABA or 800 μM H2O2. The promotive effects of ABA-induced adventitious rooting under drought stress were suppressed by CAT or DPI, suggesting that endogenous H2O2 might be involved in ABA-induced adventitious rooting. ABA increased relative water content (RWC), leaf chlorophyll content, chlorophyll fluorescence parameters (Fv/Fm, ΦPS II and qP), water soluble carbohydrate (WSC) and soluble protein content, and peroxidase (POD), polyphenol oxidase (PPO) and indoleacetate oxidase (IAAO) activities, while decreasing transpiration rate. However, the effects of ABA were inhibited by H2O2 scavenger CAT. Therefore, H2O2 may be involved in ABA-induced adventitious root development under drought stress by stimulating water and chlorophyll content, chlorophyll fluorescence, carbohydrate and nitrogen content, as well as some enzyme activities.  相似文献   

17.
以酿酒葡萄‘雷司令’(Riesling)一年生营养袋扦插苗为材料,采用人工气候室水培试验,考察在聚乙二醇6000(PEG)模拟干旱条件下,不同浓度(0.05、0.10和0.20mg/L)24-表油菜素内酯(EBR)预处理对‘雷司令’幼苗活性氧、抗氧化物质、渗透调节物质含量和抗氧化酶活性的影响,以揭示EBR预处理对干旱胁迫下葡萄幼苗的抗旱机理。结果显示:(1)与正常生长(对照)相比,干旱胁迫显著提高葡萄幼苗叶片中超氧阴离子自由基(■)、过氧化氢(H_2O_2)和丙二醛(MDA)含量;与干旱胁迫处理(PEG)相比,不同浓度EBR预处理均可降低叶片中■、H_2O_2和MDA的含量。(2)与对照相比,PEG处理显著降低葡萄幼苗叶片的抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量;与PEG处理相比,各浓度EBR预处理均可显著提高葡萄叶片AsA与GSH的含量,且以0.10mg/LEBR处理效果最好。(3)随着干旱胁迫时间的延长,葡萄幼苗叶片中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)与抗坏血酸过氧化物酶(APX)活性均呈先上升后下降的变化趋势,而在正常生长条件下酶活性基本保持不变;EBR预处理的葡萄叶片SOD、CAT、POD和APX活性均始终高于同期PEG处理。(4)PEG处理条件下,渗透调节物质脯氨酸和可溶性蛋白的含量整体高于对照;与PEG处理相比,不同浓度EBR预处理在干旱胁迫中后期均能显著提高葡萄叶片中脯氨酸和可溶性蛋白含量。研究表明,在干旱胁迫下,外源EBR预处理能够提高葡萄叶片抗氧化系统酶活性和渗透调节物质含量,有效降低干旱胁迫诱导的活性氧过度积累及膜脂过氧化程度,提高葡萄幼苗的抗旱能力,且以0.10mg/L EBR处理效果最佳。  相似文献   

18.
The hemibiotrophic pathogen Fusarium culmorum (Fc) causes crown and root rot (CRR) in wheat. In this study, MeJA treatment was done 6 h after pathogen inoculation (hai) to focus the physiological and biochemical responses in root tissue of the susceptible wheat cv Falat, partially resistant cv Pishtaz and the tolerant cv Sumai3 at the beginning of the necrotrophic stage. The results indicate that treatment with MeJA at 6 hai significantly delayed the necrotic progress in cv Falat, whereas no significant difference was seen in other cultivars. The activities of pathogen responsive defense-related enzymes (SOD, CAT, POX, PPO, LOX and PAL), total phenols and callose contents were higher in Sumai3, while treatment with MeJA significantly increased these enzymes activities and total phenols content in Falat, signifying the most sensitive cultivar which had a weak reaction to the pathogen but a strong response to MeJA treatment. Additionally, MeJA treatment decreased the level of H2O2 and MDA contents particularly in cv Falat. This is the first work reporting the regulation of defense-related enzymes by MeJA treatment at particular time point of 6 hai suggests the possible role of JA in regulating basal resistance in CRR pathogen–wheat interaction. Taken together, our data add new insights into the mechanism of wheat defense including enzymatic events controlling wheat protection against Fc infection.  相似文献   

19.
Global atmospheric concentration of CO2 is likely to increase from 350 to 750 ppm over the next 100 years. The present studies were undertaken to understand the effects of elevated CO2 on enzymatic activity and secondary metabolites in chickpea in relation to expression of resistance to pod borer, Helicoverpa armigera. Fifteen-day-old chickpea plants [ICCL 86111—resistant and JG 11—commercial cultivar] grown in the greenhouse were transferred to open-top chambers (OTC) and kept under 350, 550 and 750 ppm of CO2. Twenty neonates of H. armigera were released on each plant at 7 days after shifting the pots to the OTCs. Un-infested plants were maintained as controls. After 7 days of infestation, the activities of defensive enzymes [peroxidase (POD), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL)] and amounts of total phenols and condensed tannins increased with an increase in CO2 concentration in chickpea. The nitrogen balance index was greater in plants kept at 350 ppm CO2 than in plants kept under ambient conditions. The H. armigera-infested plants had higher H2O2 content; amounts of oxalic and malic acids were greater at 750 ppm CO2 than at 350 ppm CO2. Plant damage was greater at 350 ppm than at 550 and 750 ppm CO2. This information will be useful for understanding effects of increased levels of CO2 on expression of resistance to insect pests to develop strategies to mitigate the effects of climate change.  相似文献   

20.
The aim of this study was to test the protective roles of superoxide dismutases (SODs), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) against oxidative damage and their activities in different phases of the dry down process in Reaumuria soongorica (Pall.) Maxim. leaves. Drought stress was imposed during 100 consecutive days and rewatering after 16, 72, and 100 days. The concentration of hydrogen peroxide (H2O2), malondialdehyde, and SODs activities were elevated significantly with progressing drought stress. POD and CAT activities increased markedly in the early phase of drought and decreased significantly with further drought stress continuation, and POD activity was unable to recover after rewatering. Ascorbate, reduced glutathione, APX, and GR activities declined in the initial stages of drought process, elevated significantly with further increasing water deficit progression and recovered after rewatering. These results indicate that: (1) iron SODs-removing superoxide anion is very effective during the whole drought stress; (2) CAT scavenges H2O2 in the early phase of drought and enzymes of ascorbate–glutathione cycle scavenge H2O2 in further increasing drought stress; and (3) POD does not contribute to protect against oxidative damage caused by H2O2 under drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号