首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of M-CSF-exposed macrophages on murine splenic lymphocyte responses was determined. Resident peritoneal macrophages incubated with purified M-CSF for 48 hr inhibited lymphocyte proliferation to Con A, PHA, and listerial antigen as determined by [3H]TdR uptake, and inhibited Con A-stimulated lymphocyte IL 2 production. The inhibition was similar to that observed with macrophages from BCG-infected mice. Maximal suppression occurred at M-CSF concentrations of 500 U/ml or greater and when the incubation time with M-CSF was 48 hr or more. M-CSF effect was specific because rabbit anti-M-CSF IgG blocked the suppression whereas control rabbit IgG did not. Secretory products of macrophages could not be implicated in this interaction. Catalase and indomethacin, alone or together, did not reverse the inhibition. In addition, putative suppressive factors were not detected in supernatants of M-CSF-stimulated macrophages. Lymphocytes that were removed from macrophage monolayers and were recultured in medium plus Con A were able to proliferate. Macrophages stimulated by M-CSF therefore appear to have inhibitory activity for proliferating lymphocytes, and may play a role in immunoregulatory mechanisms.  相似文献   

2.
The L-arginine content of the extracellular fluid in sites of predominant macrophage infiltration is reduced below plasma levels due to the activity of macrophage-derived arginase. Investigation of the effects of altered L-arginine availability on macrophage physiology reveals that culture of rat peritoneal macrophages in media containing L-arginine in the concentrations present in inflammatory lesions (less than 0.1 mM) enhances activation-associated functions. In contrast, culture in the higher L-arginine concentrations found in standard tissue culture media (0.4 to 1.2 mM) suppresses most macrophage functions (superoxide production, phagocytosis, and protein synthesis). An exception is the tumor cytotoxicity of Corynebacterium parvum-elicited macrophages which is enhanced by culture in supraphysiologic concentrations of L-arginine. Work reported here investigated the mechanisms for these L-arginine-dependent effects and, more specifically, the role of the recently described oxidative L-arginine deiminase pathway in the regulation of macrophage physiology. Overnight culture of resident or C. parvum-elicited peritoneal macrophages in media containing increasing concentrations of L-arginine (6 microM to 1 mM) resulted in: inhibition of electron transport chain activity (resident and C. parvum-elicited macrophages), increased lactate production (resident macrophages), and decreased ATP content (resident and C. parvum-elicited macrophages). In line with these findings, viability was markedly decreased after 2 days of culture when the initial L-arginine concentration was greater than or equal to 0.1 mM. As shown before, increasing media concentrations of L-arginine were associated with suppression of superoxide production and cytotoxicity in resident macrophages, and with reduced superoxide production and increased cytotoxicity in C. parvum-elicited macrophages. All L-arginine-dependent metabolic and functional alterations, as well as the loss of viability, were prevented by NG-monomethyl-L-arginine, a specific inhibitor of the oxidative L-arginine deiminase pathway. These results demonstrate that flux of L-arginine through the oxidative L-arginine deiminase pathway results in the inhibition of oxidative metabolism in rat macrophages. This metabolic inhibition may, through alterations in the macrophage high energy phosphate stores, mediate the suppression of cell functions and result ultimately in cell death.  相似文献   

3.
The antiviral activity of recombinant human macrophage CSF (M-CSF) against genital herpes simplex virus type-2 (HSV-2) infection in guinea pigs was investigated. M-CSF stimulates proliferation of human and guinea pig peripheral blood monocytes, specifically the plastic adherent esterase-positive mononuclear cells. When anti-HSV-2 activity of M-CSF was evaluated in guinea pigs by 6 daily injection (s.c.) of M-CSF at various doses (5 x 10(5) to 7 x 10(7) U/kg), we found 2 x 10(6) U/kg to be the optimum dose for protective efficacy against primary HSV-2 infection. Either at a lethal, 5 x 10(5) pfu, or sublethal 5 x 10(4) pfu of virus challenge, animals treated with the optimum regimen of M-CSF exhibited lower herpetic lesion scores (p less than 0.005), and lower mortality (p less than 0.025) than animals in placebo group. M-CSF treatment increased the HSV-infected cell killing activities of plastic-adherent mononuclear cells, indicating that in vivo administration of M-CSF may activate the antiviral effects of guinea pig macrophages that may play a role in protection against severity and mortality of herpetic disease.  相似文献   

4.
GM-CSF and M-CSF (CSF-1) induce different phenotypic changes in macrophage lineage populations. The nature, extent, and generality of these differences were assessed by comparing the responses to these CSFs, either alone or in combination, in various human and murine macrophage lineage populations. The differences between the respective global gene expression profiles of macrophages, derived from human monocytes by GM-CSF or M-CSF, were compared with the differences between the respective profiles for macrophages, derived from murine bone marrow cells by each CSF. Only 17% of genes regulated differently by these CSFs were common across the species. Whether a particular change in relative gene expression is by direct action of a CSF can be confounded by endogenous mediators, such as type I IFN, IL-10, and activin A. Time-dependent differences in cytokine gene expression were noted in human monocytes treated with the CSFs; in this system, GM-CSF induced a more dramatic expression of IFN-regulated factor 4 (IRF4) than of IRF5, whereas M-CSF induced IRF5 but not IRF4. In the presence of both CSFs, some evidence of "competition" at the level of gene expression was observed. Care needs to be exercised when drawing definitive conclusions from a particular in vitro system about the roles of GM-CSF and M-CSF in macrophage lineage biology.  相似文献   

5.
The ability of a variety of soluble factors, alone or in combination, to endow murine resident peritoneal macrophages with listericidal activity was assessed. Inhibition of growth and (or) killing of Listeria in infected macrophages was determined by the uptake of [3H]uracil following lysis of the infected macrophage monolayers. Interferon-gamma was shown to induce modest listericidal activity in murine resident macrophages as compared with untreated monolayers. Treatment with tumour necrosis factor alpha also induced significant listericidal activity in this system. Among other cytokines tested, IL-4 induced an ability to inhibit growth of Listeria in resident macrophages. The ability of cytokines tested, IL-4 induced an ability to inhibit growth of Listeria in resident macrophages. The ability of cytokines to act in an additive or synergistic fashion with IFN-gamma was also investigated. Combinations of IFN-gamma and IL-4 and IFN-gamma and IL-2 induced listericidal activity not greater than that seen with IFN-gamma alone. IFN-gamma and TNF-alpha were shown to increase bactericidal activity in an additive fashion. However, elicited macrophages were shown to spontaneously exert a significant listericidal activity that was not enhanced by cytokine treatment. Collectively, these findings show that cytokine treatment induced rather modest enhancement in listericidal activity in murine resident peritoneal macrophages and no enhancement whatsoever in elicited macrophages. Thus, in in vivo situations where Listeria organisms are completely cleared from the infected organs, mechanisms other than lymphokine-induced listericidal activity of resident macrophages would seem to be operating.  相似文献   

6.
Macrophages are known to possess suppressor activities in immune responses. To determine the effects of GM-CSF and M-CSF on the expression of macrophage suppressor activities, monocyte-derived macrophages cultured with GM-CSF (GM-Mphis) were compared with those cultured with M-CSF (M-Mphis) for antigen-specific proliferation and interferon-gamma (IFN-gamma) production by lymphocytes. Both GM-Mphis and M-Mphis equally suppressed lymphocyte proliferation, but only M-Mphis suppressed IFN-gamma production in response to purified protein derivative (PPD). M-Mphis, but not GM-Mphis, released IL-10 not only in the course of macrophage differentiation but also in response to PPD after maturation to macrophages. From the results that (i) exogenous IL-10 suppressed IFN-gamma production, but not proliferation of lymphocytes, and that (ii) neutralizing antibody to IL-10 reversed suppressor activities of M-Mphis on IFN-gamma production, but not lymphocyte proliferation, it appeared that IL-10 was the major factor responsible for suppression of IFN-gamma production. Thus, these results suggest that only M-CSF augments IL-10-dependent suppressor activity of macrophages on IFN-gamma production and that both GM-CSF and M-CSF induce IL-10-independent macrophage suppressor activity on lymphocyte proliferation.  相似文献   

7.
Macrophages are activated by lymphokines (LK) to kill tumor cell and microbial targets. Interferon-gamma (IFN) is the major LK activity in conventional, antigen or mitogen-stimulated spleen cell culture fluids for induction of these macrophage effector functions. In view of the recent demonstration that murine macrophage-like cell lines have receptors for B cell stimulatory factor-1/interleukin 4 (BSF-1), a possible role for BSF-1 in regulation of macrophage function was considered. In this communication, thioglycollate-elicited murine peritoneal macrophages were shown to express about 2300 high affinity (Ka approximately 2 X 10(10) M-1) BSF-1 receptors/cell. Peritoneal macrophages treated with purified, T cell-derived BSF-1 developed potent tumoricidal activity against fibrosarcoma target cells. The concentration of BSF-1 that induced 50% of maximal tumor cytotoxicity was 38 +/- 4 U/ml for seven experiments; similar dose-responses were observed with recombinant BSF-1. That BSF-1 dose-responses for induction of macrophage-mediated tumor cytotoxicity were not affected by 5 micrograms/ml polymyxin B suggested that contaminant endotoxins played little or no role in cytotoxic activity. BSF-1 alone (less than or equal to 500 U/ml) was not directly toxic to tumor cells or macrophages. Macrophage tumoricidal activity induced by BSF-1 but not by IFN was inhibited greater than or equal to 90% with monoclonal anti-BSF-1 antibody. BSF-1 induced Ia antigen expression on peritoneal macrophages and increased (twofold to threefold) FcR(II)-dependent binding of murine IgG immune complexes to bone marrow-derived macrophages (greater than 98% macrophages). Based on these findings, it was concluded that BSF-1 is a potent macrophage activation factor.  相似文献   

8.
Mammalian immune responses to Trypanosoma brucei infection are important to control of the disease. In rats infected with T. brucei gambiense (Wellcome strain; WS) or T. brucei brucei (interleukin-tat 1.4 strain [ILS]), a marked increase in the number of macrophages in the spleen can be observed. However, the functional repercussions related to this expansion are not known. To help uncover the functional significance of macrophages in the context of trypanosome infection, we determined the mRNA levels of genes associated with an increase in macrophage number or macrophage function in WS- and ILS-infected rats and in cultured cells. Specifically, we assayed mRNA levels for macrophage colony stimulating factor (M-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage migration inhibitory factor (MIF). Upregulation of GM-CSF and MIF mRNA levels was robust in comparison with changes in M-CSF levels in ILS-infected rats. By contrast, upregulation of M-CSF was more robust in WS-infected rats. The phagocytic activity in macrophages harvested from ILS-infected rat spleens, but not WS-infected spleens, was higher than that in macrophages from uninfected rats. These results suggest that macrophages of WS-infected rats change to an immunosuppressive type. However, when WS or ILS is cocultured with spleen macrophages or HS-P cells, a cell line of rat macrophage origin, M-CSF is upregulated relative to GM-CSF and MIF in both cell types. Anemia occurs in ILS-, but not WS-infected, rats. Treatment of spleen macrophages or HS-P cells cocultured with ILS with cobalt chloride, which mimics the effects of anemia-induced hypoxia, led to downregulation of M-CSF mRNA levels, upregulation of GM-CSF and MIF, and an increase in phagocytic activity. However, the effect of cobalt chloride on spleen macrophages and HS-P cells cocultured with WS was restricted. These results suggest that anemia-induced hypoxia in ILS-infected rats stimulates the immune system and activates macrophages.  相似文献   

9.
Mycobacterium bovis (BCG), when maintained in vitro, readily incorporates [3H]uracil, the RNA precursor. The rate of [3H]uracil incorporation into bacilli is sharply reduced when the BCG is phagocytized by murine adherent resident peritoneal macrophages and subsequently released by the lysis of monolayers. Macrophages derived from mouse strains that are innately resistant to BCG infection in vivo (Bcgr) are able to inhibit the [3H]uracil incorporation into the bacilli in a significantly more effective way than macrophages from BCG-susceptible (Bcgs) strains. This difference is best demonstrated with a low rate of infection (BCG: macrophage ratio between 1:1 and 2:1), and is most pronounced at 4 to 5 days after in vitro infection of macrophage monolayers. In vivo interaction of BCG with peritoneal macrophages in situ results in the same pattern of enhanced inhibition of [3H]uracil incorporation by Bcgr macrophages. The use of Bcg-congenic mouse strains has confirmed that the Chromosome 1 Bcg (Ity, Lsh) locus is regulating the antimycobacterial activity of macrophages. We conclude that the resident macrophage is the cell population that expresses the phenotype of genetically determined resistance to BCG infection.  相似文献   

10.
The effect of exogenous RNA on many cellular functions has been studied in a variety of eukaryotic cells but there are few reports on macrophages. In the present study, it is demonstrated that cytoplasmatic RNA extracted from rat macrophages stimulated with Escherichia coli lipopolysaccharide (LPS), referred to as L-RNA, induced the release of TNF-alpha and IL-1 from monolayers of peritoneal resident macrophages. The activity of L-RNA was not altered by polymyxin B but was abolished by ribonuclease (RNase) pretreatment, indicating the absence of LPS contamination and that the integrity of the polynucleotide chain is essential for this activity. Both the poly A(-) and poly A(+) fractions obtained from L-RNA applied to oligo(dT)-cellulose chromatography induced TNF-alpha and IL-1 release. The L-RNA-induced cytokine release was inhibited by dexamethasone and seemed to be dependent on protein synthesis since this effect was abolished by cycloheximide or actinomycin-D. The LPS-stimulated macrophages, when pre-incubated with [5-(3)H]-uridine, secreted a trichloroacetic acid (TCA) precipitable material which was sensitive to RNase and KOH hydrolysis, suggesting that the material is RNA. This substance was also released from macrophage monolayers stimulated with IL-1beta but not with TNF-alpha, IL-6 or IL-8. The substance secreted ((3)H-RNA) sediments in the 4-5S region of a 5-20% sucrose gradient. These results show that L-RNA induces cytokine secretion by macrophage monolayers and support the idea that, during inflammation, stimulated macrophages could release RNA which may further induce the release of cytokines by the resident cell population.  相似文献   

11.
The capacity of macrophage colony-stimulating factor (M-CSF) to enhance respiratory burst activity in peritoneal macrophages was measured. Macrophages incubated for 48 hr or more with concentrated L cell-conditioned medium as a source of M-CSF released two to three times as much O2- in response to PMA as did unexposed macrophages. Stimulation was noted at concentrations of colony-stimulating activity from 0.1 to 2000 U/ml and was maximal at 10 to 100 U/ml. Purified, endotoxin-free CSF enhanced secretion to a similar degree as unpurified L cell-conditioned medium. Release of O2- by M-CSF macrophages occurred over 60 min and was triggered by opsonized zymosan as well as PMA. H2O2 release was also enhanced in macrophages exposed to both unpurified and purified M-CSF. These data indicate that M-CSF enhances the capacity of mature macrophages to release oxygen reduction products, and they are consistent with reports that CSF can stimulate the release of other secretory products.  相似文献   

12.
The ability of purified human macrophage colony-stimulating factor (M-CSF) to accelerate the formation of stromal cells from murine bone marrow cells was investigated. The liquid culture of the marrow cells with M-CSF resulted in the formation of monolayers of macrophages on day 7. When the M-CSF was removed on that day and the residual adherent cells were cultured in the absence of M-CSF for an additional 7 days, many colonies appeared with cells that were morphologically distinguishable from M-CSF-derived macrophages. The appearance of the colonies was dependent on the concentration of M-CSF used at the beginning of the culture. Each colony was isolated as a single clone and analyzed. All clones were negative for esterase staining. These cells did not express M-CSF receptor mRNA and did not show a mitogenic response to M-CSF. On the contrary, these cells could be stimulated to proliferate by fibroblast growth factor and platelet-derived growth factor. The polymerase chain reaction analysis of these cells demonstrated constitutive expression of mRNA for M-CSF, stem cell factor, and interleukin (IL)-1, but not IL-3. Some clones expressed mRNA for granulocyte/M-CSF and IL-6. We also examined the ability of the cells to maintain murine bone marrow high proliferative potential colony-forming cells (HPP-CFC) in a coculture system. Most of the clones showed a significant increase in total HPP-CFC numbers after 2 weeks of coculture, although the extent of stimulation differed among clones. These results suggested that the colonies established by M-CSF were composed of functional stromal cells that were phenotypically different from macrophages. J. Cell. Physiol. 173:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Immunoregulatory effects of human macrophages on natural killer (NK) activity were studied. Monocytes were isolated by adherence to plastic, after leukapheresis of normal blood donors, and cultured for 1 to 14 days. In vitro-differentiated (5-7 days) human macrophages consistently and significantly (P less than 0.01) augmented NK activity of fresh autologous or allogeneic PBMNC. During culture, these macrophages also developed increased antitumor cytostatic activity. The optimal time for both the expression of cytostatic activity and up-regulation of NK activity was 5-7 days in culture. In contrast, 12- to 14-day macrophages significantly suppressed NK activity and had less cytostatic activity. Macrophages in culture demonstrated shifts in Leu-M3+HLA-DR+ phenotype from the mean of 60% +/- 11 (SD) in fresh monocytes to 90% +/- 5 between Days 5 and 7 in culture and then down to 10% +/- 5 in 14-day cultures. The activity of NK (CD56+CD3-) cells, purified by Percoll gradient centrifugation and flow cytometry, was up-regulated directly by in vitro-differentiated macrophages at low macrophage to NK cell ratios, and this up-regulation was not dependent on T lymphocytes or other accessory cells. The modulation of NK activity by differentiated macrophages was not MHC-restricted and depended on the viability and cellular integrity of macrophages. Sonicated macrophages could no longer up-regulate NK activity. This study shows that antitumor effects mediated by human in vitro differentiated LeuM3+HLA-DR+ macrophages may simultaneously involve more than one mechanism, namely direct cytostasis of tumor cells and activation of NK cells.  相似文献   

14.
Macrophage colony-stimulating factor (M-CSF) was investigated as a stimulator of ADCC to the murine R1.1 thymoma target by murine peritoneal exudate macrophages which were elicited by proteose peptone. Both an 125IUdR release and a viable cell count assay were used. The latter assay avoids radiation damage, and the fate of the targets can be determined over a long period. Pretreatment of macrophages for several days in culture with lymphokine (LK) from concanavalin A-induced mouse spleen cells moderately stimulated ADCC. Preincubation of macrophages with conventional or recombinant human M-CSF or immunoaffinity-purified mouse M-CSF alone had little effect. However, M-CSF greatly enhanced ADCC to the tumor target when used as a costimulant with LK, IFN-gamma, IFN-alpha, IFN-beta, or IL-2 to pretreat macrophages. Incubation of macrophages with LK or LK plus M-CSF for 2 days generated stronger ADCC than 1- or 3-day incubations. Enhancement of LK-stimulated ADCC by M-CSF appeared to plateau at about 1000 U/ml. The enhancement of macrophage cytotoxicity when stimulated with IFNs or IL-2 was most effective at the lowest active concentration of these LKs. At 1 U/ml IFN-gamma or IL-2, or 5 U/ml IFN-alpha or IFN-beta, M-CSF boosted ADCC activity to that using 10-fold of the LK alone. IL-1, IL-4, and TNF had little or no stimulating activity for ADCC alone or with M-CSF, and the other hemopoietic growth factors IL-3 and GM-CSF did not promote this effector function alone or with IFN-gamma. We previously showed that M-CSF boosted macrophage antibody-independent killing of TU5 sarcoma targets with or without LK (Cell. Immunol. 105, 270, 1987). These studies thus show that M-CSF is a positive regulator of both macrophage-nonspecific tumor lysis and ADCC.  相似文献   

15.
The in vivo and ex vivo effects of macrophage colony-stimulating factor (M-CSF) were studied in a profoundly neutropenic rabbit model in order to determine its potential to augment pulmonary host defence against Aspergillus. M-CSF (100-600 microg/kg/d) was administered prophylactically to neutropenic rabbits with pulmonary aspergillosis starting three days pre-inoculation and then throughout neutropenia. Rabbits receiving M-CSF had significantly increased survival (P=0.01) and decreased pulmonary injury, as measured by decreased pulmonary infarction (P=0.004), when compared with untreated controls. Microscopic studies demonstrated greater numbers of activated pulmonary alveolar macrophages (PAMs) in lung tissue of rabbits receiving M-CSF, in comparison to controls (P<0.001). PAMs harvested from rabbits treated with M-CSF had a significantly greater percent phagocytosis of Aspergillus fumigatus conidia than did PAMs from controls (P=0.04). These data indicate that prophylactic administration of M-CSF augments pulmonary host defence against A. fumigatus and suggest a potential role for this cytokine as adjunctive therapy in the treatment of pulmonary aspergillosis in the setting of profound neutropenia.  相似文献   

16.
Macrophages (Mϕ) are the major source of inflammatory cytokines and are target cells for dengue virus (DV) replication. However, Mϕ are heterogeneous and their phenotypic and functional diversities are influenced by cytokines that regulate their differentiation, tissue distribution, and defense against invading pathogens. In vitro, human primary macrophages are derived from peripheral blood CD14+ monocytes in the presence of macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF). These are essential for developing tissue/resting macrophages (M-Mϕ) and inflammatory macrophages (GM-Mϕ), respectively. While IFN production is similar between M-Mϕ and GM-Mϕ, M-Mϕ cannot produce IL-1β after DV infection. In contrast, GM-Mϕ is more susceptible to DV infection and DV triggers CLEC5A in GM-Mϕ to activate NLRP3 inflammasomes, which in turn release IL-18 and IL-1β that are critical for Th17 activation and contribute to disease severity. Thus, GM-Mϕ is more representative than M-Mϕ for investigating inflammasome activation in dengue infection, and is invaluable for revealing the molecular mechanism of pathogen-induced inflammatory reaction. Distinct phenotypes of macrophage subsets under the influence of M-CSF and GM-CSF raise the question of optimal conditions for culturing primary macrophages to study host-pathogen interaction.  相似文献   

17.
The effect of macrophage colony-stimulating factor (CSF-1) on killing of Candida albicans by murine peritoneal macrophages was determined. The killing capacity of resident peritoneal macrophages was unaffected by CSF-1. However, proteose-peptone-elicited peritoneal exudate macrophages that had been pretreated with CSF-1 (greater than or equal to 1000 U/ml) for 24 or 48 hr exhibited a significantly enhanced capacity to kill C. albicans. CSF-enhanced killing appeared to be independent of endogenously produced interferon-alpha/beta (IFN) in that enhancement by these two agents differed with regard to onset of the effect, target cell responsiveness, and duration of augmented killing. In addition, a highly specific anti-IFN antiserum that totally neutralized IFN augmentation of candidacidal activity had no effect on CSF-induced enhancement. Evidence was obtained indicating that CSF, unlike IFN, augmented mannose-inhibitable binding and ingestion of C. albicans, suggesting that augmented expression of mannose-receptors by CSF-treated macrophages was at least partially responsible for the enhanced killing.  相似文献   

18.
CFU-GM-derived cells form osteoclasts at a very high efficiency   总被引:6,自引:0,他引:6  
The granulocyte-macrophage progenitor (CFU-GM) is a multipotent cell that can differentiate to osteoclasts (OCLs), macrophages, or granulocytes. However, the relative potential of CFU-GM to efficiently form OCLs is unknown. In this report we demonstrate that granulocyte-macrophage colony-forming unit (CFU-GM)-derived cells represent an easily obtainable highly purified source of human OCL precursors that form OCLs at very high efficiency (greater than 90%) when cultured with RANK ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and dexamethasone. The OCLs that formed have high bone-resorbing activity and form multiple resorption lacunae per OCL on dentin slices. Similarly, murine marrow-derived CFU-GM also formed OCLs at a high efficiency (>80%) when treated with RANKL, M-CSF, and dexamethasone. In contrast, more committed macrophage colony-forming unit (CFU-M)-derived cells form few OCLs under these conditions.  相似文献   

19.
After stimulation of the mouse peritoneal cavity with newborn calf serum (NBCS), four types of monocyte and macrophage were distinguished on the basis of peroxidase (PO) patterns. Cytochemically, these cells showed strong heterogeneity in 5'-nucleotidase (5'N) activity. Monocytes and monocyte-derived macrophages with PO activity in granules lacked 5'N activity. Resident macrophages (with PO activity in RER and nuclear envelope) generally had significant 5'N activity on the plasma membrane, the pattern showing close correlation with the biochemical findings. The group of PO-negative macrophages comprised both 5'N-negative and 5'N-positive cells. These findings suggest two possibilities, i.e., that monocytes (5'N-)transform via PO-negative cells (5'N -/+) into resident macrophages (5'N +), or that the monocytes and monocyte-derived macrophages and the resident macrophages represent separate lineages. The fourth type of macrophage, the exudate-resident cell (with PO activity both in granules and in the RER and nuclear envelope), occurred only in low numbers and very late after NBCS stimulation, and is therefore considered not to be a transitional cell between monocytes and resident macrophages.  相似文献   

20.
Bone marrow-derived macrophages proliferate in response to specific growth factors, including macrophage colony-stimulating factor (M-CSF). When stimulated with activating factors, such as lipopolysaccharide (LPS), macrophages stop proliferating and produce proinflammatory cytokines. Although triggering opposed responses, both M-CSF and LPS induce the activation of extracellular-regulated kinases (ERKs) 1 and 2. However, the time-course of ERK activation is different; maximal activation by M-CSF and LPS occurred after 5 and 15 min of stimulation, respectively. Granulocyte/macrophage colony-stimulating factor, interleukin 3, and TPA, all of which induced macrophage proliferation, also induced ERK activity, which was maximal at 5 min poststimulation. The use of PD98059, which specifically blocks ERK 1 and 2 activation, demonstrated that ERK activity was necessary for macrophage proliferation in response to these factors. The treatment with phosphatidylcholine-specific phospholipase C (PC-PLC) inhibited macrophage proliferation, induced the expression of cytokines, and triggered a pattern of ERK activation equivalent to that induced by LPS. Moreover, PD98059 inhibited the expression of cytokines induced by LPS or PC-PLC, thus suggesting that ERK activity is also required for macrophage activation by these two agents. Activation of the JNK pathway did not discriminate between proliferative and activating stimuli. In conclusion, our results allow to correlate the differences in the time-course of ERK activity with the macrophagic response toward proliferation or activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号