首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
During remodeling progress post myocardial infarction, the contribution of neoangiogenesis to the infarct-bed capillary is insufficient to support the greater demands of the hypertrophied but viable myocardium resulting in further ischemic injury to the viable cardiomyocytes at risk. Here we reported the bio-assay-guided identification and isolation of angiogenic tannins (angio-T) from Geum japonicum that induced rapid revascularization of infarcted myocardium and promoted survival potential of the viable cardiomyocytes at risk after myocardial infarction. Our results demonstrated that angio-T displayed potent dual effects on up-regulating expression of angiogenic factors, which would contribute to the early revascularization and protection of the cardiomyocytes against further ischemic injury, and inducing antiapoptotic protein expression, which inhibited apoptotic death of cardiomyocytes in the infarcted hearts and limited infarct size. Echocardiographic studies demonstrated that angio-T-induced therapeutic effects on acute infarcted myocardium were accompanied by significant functional improvement by 2 days after infarction. This improvement was sustained for 14 days. These therapeutic properties of angio-T to induce early reconstitution of a blood supply network, prevent apoptotic death of cardiomyocytes at risk, and improve heart function post infarction appear entirely novel and may provide a new dimension for therapeutic angiogenesis medicine for the treatment of ischemic heart diseases.  相似文献   

2.
Extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteases (MMPs) play an essential role in the repair of infarcted tissue, which affects ventricular remodeling after myocardial infarction. ADAMTS1 (A disintegrin and metalloprotease with thrombospondin motifs), a newly discovered metalloprotease, was originally cloned from a cancer cell line, but little is known about its contribution to disease. To test the hypothesis that ADAMTS1 appears in infarcted myocardial tissue, we examined ADAMTS1 mRNA expression in a rat myocardial infarction model by Northern blotting, real-time RT-PCR and in situ hybridization. Normal endothelium expressed little ADAMTS1 mRNA, while normal myocardium expressed no detectable ADAMTS1 mRNA. Up-regulation of ADAMTS1 was demonstrated by Northern blot analysis and real-time RT-PCR at 3 h after coronary artery ligation. In situ hybridization revealed strong ADAMTS1 mRNA signals in the endothelium and myocardium in the infarcted heart, mainly in the infarct zone, at 3 h after myocardial infarction. The rapid and transient up-regulation of the ADAMTS1 gene in the ischemic heart was distinct from the regulatory patterns of other MMPs. Our study demonstrated that the ADAMTS1 gene is a new early immediate gene expressed in the ischemic endothelium and myocardium.  相似文献   

3.
《Autophagy》2013,9(2):304-306
The extent of adverse myocardial remodeling contributes essentially to the prognosis after myocardial infarction (MI). Currently, therapeutic strategies that inhibit remodeling are limited to inhibition of neurohumoral activation. mTOR-dependent signaling mechanisms are centrally involved in the myocardial remodeling process. There exists a controversy as to whether autophagy is beneficial in the setting of myocardial infarction. We now provide evidence that induction of autophagy by inhibition of mTOR with everolimus (RAD) prevents adverse left ventricular remodeling and limits infarct size following myocardial infarction. mTOR inhibition increases autophagy and concomitantly decreases proteasome activity especially in the border zone of the infarcted myocardium. The induction of autophagy via mTOR inhibition is a novel potential therapeutic approach to limit infarct size and to attenuate adverse left ventricular remodeling following MI.  相似文献   

4.
Congestive heart failure is a growing, worldwide epidemic. The major causes of heart failure are related to irreversible damage resulting from myocardial infarction (heart attack). The long-standing axiom has been that the myocardium has a limited capacity for self-repair or regeneration; and the irreversible loss of cardiac muscle and accompanying contraction and fibrosis of myocardial scar tissue, sets into play a series of events, namely, progressive ventricular remodeling of nonischemic myocardium that ultimately leads to progressive heart failure. The loss of cardiomyocyte survival cues is associated with diverse pathways for heart failure, underscoring the importance of maintaining the number of viable cardiomyocytes during heart failure progression. Currently, no medication or procedure used clinically has shown efficacy in replacing the myocardial scar with functioning contractile tissue. Therefore, given the major morbidity and mortality associated with myocardial infarction and heart failure, new approaches have been sought to address the principal pathophysiologic deficits responsible for these conditions, resulting from the loss of cardiomyocytes and viable blood vessels. Recently, the identification of stem cells from bone marrow capable of contributing to tissue regeneration has ignited significant interest in the possibility that cell therapy could be employed therapeutically for the repair of damaged myocardium. In this review, we will discuss the currently available bone marrow-derived stem progenitor cells for myocardial repair and focus on the advantages of using recently identified novel bone marrow-derived multipotent stem cells (BMSC)  相似文献   

5.
We used human angiopoietin-1 (hAng1)-modified mesenchymal stem cells (MSCs) to treat acute myocardial infarction (AMI) in rats. The hAng1 gene was transfected into cultured rat MSCs using an adenoviral vector. Five million hAng-transfected MSCs (MSC(Ang1)) or green fluorescent protein transfected MSCs (MSC(GFP)) or PBS only (PBS group) were injected intramyocardially into the inbred Lewis rat hearts immediately after myocardial infarction. MSC(Ang1) survived in the infarcted myocardium, and expressed hAng1 at both mRNA and protein levels. The vascular density was higher in the MSC(Ang1) and MSC(GFP) groups than in the PBS group. The measurements of infarcted ventricular wall thickness, infarction area, and left ventricular diameter indicated that heart remodeling was inhibited and heart function was improved in both the MSC(Ang1) and MSC(GFP) groups. However, in contrast to the MSC(GFP) group, the MSC(Ang1) group showed enhanced angiogenesis and arteriogenesis (by 11-35%), infarction area was reduced by 30% and the left ventricular wall was 46% thicker (P<0.05). The results indicated that hAng1-modified MSCs improved heart function, followed by angiogenic effects in salvaging ischemic myocardium and reduced cardiac remodeling.  相似文献   

6.
Eun LY  Song H  Choi E  Lee TG  Moon DW  Hwang D  Byun KH  Sul JH  Hwang KC 《Tissue & cell》2011,43(4):238-245
Mesenchymal stem cells (MSCs) have been used with success in several clinical applications for clinical treatment of ischemic hearts. However, the reported effects of MSC-based therapy on myocardial infarction (MI) are inconsistent. In particular, the preventive effects of MSC-based therapy on arrhythmic sudden death and metabolic disorders after infarction remain controversial. Here, we investigated the effects of MSCs on reverse remodeling in an infarcted myocardium, and found that MSC-therapy failed to achieve the complete regeneration of infarcted myocardium. Histological analyses showed that although infarct size and interstitial fibrosis induced by MI recovered significantly after MSC treatment, these improvements were marginal, indicating that a significant amount of damaged tissue was still present. Furthermore, transplanted MSCs had slight anti-apoptotic and anti-inflammatory effects in MSC-implanted regions and no significant improvements in cardiac function were observed, suggesting that naïve MSCs might not be the right cell type to treat myocardial infarction. Furthermore, small ion profiling using ToF-SIMS revealed that the metabolic stabilization provided by the MSCs implantation was not significant compared to the sham group. Together, these results indicate that pretreatment of MSCs is needed to enhance the benefits of MSCs, particularly when MSCs are used to treat arrhythmogenicity and metabolically stabilize infarcted myocardium.  相似文献   

7.
Intracoronary injection of the bone marrow-derived mononuclear cells (MNCs) is emerging as a potentially novel therapy for ischemic heart failure. This study was aimed at assessing the efficacy of intracoronary MNC delivery in the myocardium. The in vivo distribution and myocardial homing of intracoronarily delivered MNCs in experimental Chinese swine with acute myocardial infarction (AMI) created by occlusion of left anterior descending (LAD) coronary artery for 90 min. MNCs radiolabeled with 18F-fluoro-deoxy-glucose (18F-FDG) were delivered using a coronary catheter into the infarct-related coronary artery 1 week after AMI. Dual-nuclide single photon emission computed tomography (SPECT) revealed that 1 h after cell infusion, 6.8 +/- 1.8% of 18F-FDG-labeled MNCs occurred in the infarcted myocardium with the remaining activity found primarily in the liver and spleen. In the heart, MNCs were detected predominantly in the under-perfused myocardium. The infused cells retained in the hearts at a rate highly correlated with the under-perfused lesional sizes. Pathological examination further demonstrated that 6 weeks after infusion, compared to controls, the hearts receiving MNCs exhibited less fibrosis and inflammatory infiltrate, more viable tissue, and higher vascular density. Cardiac function was significantly improved in the MNC-infused hearts. Thus, 18F-FDG labeling and dual-nuclide SPECT imaging is capable of monitoring in vivo distribution and homing of MNCs after intracoronary infusion. MNC coronary delivery may improve cardiac function and positive ventricular remodeling in the heart with AMI.  相似文献   

8.
We tested the hypothesis that left ventricular (LV) remodeling late after myocardial infarction (MI) is associated with myocyte apoptosis in myocardium remote from the infarcted area and is related temporally to LV dilation and contractile dysfunction. One, four, and six months after MI caused by coronary artery ligation, LV volume and contractile function were determined using an isovolumic balloon-in-LV Langendorff technique. Apoptosis and nuclear morphology were determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) and Hoechst 33258 staining. Progressive LV dilation 1-6 mo post-MI was associated with reduced peak LV developed pressure (LVDP). In myocardium remote from the infarct, there was increased wall thickness and expression of atrial natriuretic peptide mRNA consistent with reactive hypertrophy. There was a progressive increase in the number of TUNEL-positive myocytes from 1 to 6 mo post-MI (2.9-fold increase at 6 mo; P < 0. 001 vs. sham). Thus LV remodeling late post-MI is associated with increased apoptosis in myocardium remote from the area of ischemic injury. The frequency of apoptosis is related to the severity of LV dysfunction.  相似文献   

9.
After myocardial infarction (MI), the left ventricle (LV) undergoes ventricular remodeling characterized by progressive global dilation, infarct expansion, and compensatory hypertrophy of the noninfarcted myocardium. Little attention has been given to the response of remodeling myocardium to additional hemodynamic overload. Studies have indicated that gender may influence remodeling and the response to both MI and hemodynamic overload. We therefore determined 1) structural and function consequences of superimposing hemodynamic overload (systemic hypertension) on remodeling myocardium after a MI and 2) the potential influence of gender on this remodeling response. Male and female Dahl salt-sensitive and salt-resistant rats underwent coronary ligation, resulting in similar degrees of MI. One week post-MI, all rats were placed on a high-salt diet. Four groups were then studied 4 wk after initiation of high-salt feeding: MI female, MI female + hypertension, MI male, and MI male + hypertension. Hypertension-induced pressure overload resulted in additional comparable degrees of myocardial hypertrophy in both females and males. In females, hypertension post-MI resulted in concentric hypertrophy with no additional cavity dilation and no measurable scar thinning. In contrast, in males, hypertension post-MI resulted in eccentric hypertrophy, further LV cavity dilation, and scar thinning. Physiologically, concentric hypertrophy in post-MI hypertensive females resulted in elevated contractile function, whereas eccentrically hypertrophied males had no such increase. Female gender influences favorably the remodeling and physiological response to hemodynamic overload after large MI.  相似文献   

10.
Objective: After an acute myocardial infarction, the viable myocardium remote from the infarct zone is subjected to ventricular remodeling. Besides hypertrophy, processes of apoptosis may contribute to these remodeling processes. Reports on apoptosis in this area have been doubted because they were mainly based on in-situ nick-end DNA labeling (TUNEL) measurements, with questionable specifity. Moreover, the time course of initiation of these processes has not been characterized. Therefore the goals of this study were to (1) reliably determine if in the remote area of the infarcted heart apoptosis may be initiated using highly specific biochemical markers and (2) evaluate the time course of such an activation. Methods: A well-defined model, regional myocardial infarction induced by ligation of the left anterior coronary artery in rats in vivo, was used. Heart and lung wet weights, the left ventricular end-diastolic pressure (LVEDP), and the serum level of the atrial natriuretic propeptide (proANP) were determined from 1 day up to 4 weeks as indicators of developing heart failure. In transmural biopsies from the non-ischemic left ventricular wall of the infarcted heart, the activation of caspase-3, the bcl-2/bax ratio (Western blot analysis), and the DNA laddering (LM-PCR) were determined. Results: Although heart- and lung weights did not increase before 1 week after infarction, proANP levels were elevated already 1 day after myocardial infarction suggesting early sub-clinical heart failure. The activity of caspase-3 increased significantly to 160± 20% compared to sham operated controls as early as 1 day after ligation and remained elevated over the entire time course. In parallel, the bcl-2/bax ratio shifted toward the pro-apoptotic bax. Moreover, these clear and specific biochemical indicators of apoptosis in the remote area of the infarcted heart were paralleled by the fragmentation of genomic DNA. Conclusion: These data demonstrate that apoptotic markers are activated in the surviving zone of the heart remote from the infarct area as early as 1 day after myocardial infarction with persistence for up to 4 weeks. This activation coincides with early markers of heart failure. The exact regulation of this apoptotic process remains to be elucidated. Parts of this study were presented at the Annual Meetings of the American College of Cardiology 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号