首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiao D R  Tian B  Tian K  Yang Y 《农业工程》2010,30(1):27-32
In Sichuan Ruoergai Wetland National Nature Reserve, the changes in landscape patterns over a period of 17 years – from 1990 to 2007 – have been studied by means of RS, GIS technologies and field validation. In the reserve, the seven landscape patterns – river, lake, swamp, seasonal swamp, meadow, shrub and desert – were subject to the current study. The results show that the swamp, seasonal swamp, and meadow are the dominant landscape types occupying over 90% of the reserve’s total area. Over the past 17 years, the distribution area of swamp has been decreased by 3.81%, while that of seasonal swamp and meadow has been increased by 2.58% and 2.09%, respectively. In addition, the desert area has expanded by 1.19% since 2000. The nature reserve can be characterized by patch diversity, causing landscape fragmentation over the years; the total number of patches increased to 585 from 544 and the average area of the patches decreased to 283.49 h m2 from 304.29 h m2 – to the detriment of the wetland functions such as carbon sink and habitats for wild animals. In the study, the causes of the alternations are discussed as mainly resulting from climate change and human disturbances such as overgrazing, drainage, and unmanaged tourism. The study results provide a scientific basis at a strategic scale for the efficient conservation and management implementation of nature reserve zoning and assessment of landscape ecological functions and conservation values.  相似文献   

2.
Zhang D Z  Shi Y  He D H  Chen X W  Fan Y T 《农业工程》2010,30(6):319-326
Habitat fragmentation is a common cause for which species becomes threatened or endangered. Existence of viable habitat is critical to the survival of any species, so habitat fragmentation is the main reason for the changes in distribution and abundance of organisms, and is usually considered to have negative effect on the abundance, species richness and population of organisms in a specific landscape. But this effect may also depend on whether some species could use one or more types of habitat in a specific landscape. Because of its well resistance to stress, Caragana is one of predominant shrub in desert region for forest planting and desert preventing, which plays a critical role in desert control and ecosystem stabilization. Baijitan National Nature Reserve, located in Lingwu County, Ningxia Hui Autonomous Region, China, is typical of desert nature reserve in which the Caragana spp., Oxytropis aciphylla and other desert plants are protected. The Caragana woodlands in this region show a pattern of dots, patches and strips separated by natural and cultivated forest, thereby leading to a typical fragmented landscape. Etiella zinckenella (Lepidoptera, Pyralidae) is one of seed pests of Caragana. In order to illuminate the responses of E. zinckenella to the habitat fragmentation of Caraganas woodlands, the present study focused on the effects of habitat area, habitat fragmentation, as well as matrix composition on the population density and damage ratio of E. zinckenella in desert steppe. From May 2008 to June 2009, by using parallel jump sampling method, 13 Caragana woodland patches representing four landscapes from Baijitan National Nature Reserve were investigated and totally 15,117 pods were inspected. Then, the landscape fragmentation indices, population density and damage ratio of E. zinckenella in Caragana woodlands were calculated. The statistic analysis of the data indicated that the four landscapes have a significant difference in the population density and damage ratio of E. zinckenella; and in the same landscape, the neighbor patches also have a significant difference in the damage ratios of E. zinckenella. E. zinckenella seems to prefer some species of Caragana, for instance, the damage ratio of E. zinckenella to Caragana microphylla is found the highest, followed by the damage ratio to Caragana davazamcidamage, while the damage ratio to Caragana korshinskii is found the lowest. The coverage of Caragana is found positively related to the damage ratio of E. zinckenella with hinge damage ratio in high coverage of Caragana forest. The regression analysis shows that the latitude (Rs = 0.5724), longitude (Rs = 0.5577), altitude (Rs = 0.4614) and patch area (R = 0.3012) were not significantly associated with population density and damage ratio of E. zinckenella. However, the population density and damage ratio of E. zinckenella decreased with the increasing in patch area. The landscape patch fragmentation index (R = 0.91129) and the patch density index (R = 0.89864) show a positive correlation with damage ratio. The fragmentation shape index (R = ?0.89675) and inside habitat area fragmentation index (R = ?0.77646) show a negative correlation with the damage ratio. As a result, the population of E. zinckenella was suppressed by the landscape fragmentation, but the patch isolation and complementary resources in the landscape matrix may also have a positive impact on the population density of E. zinckenella.  相似文献   

3.
王鹏  王亚娟  刘小鹏  陈晓  孔福星 《生态学报》2018,38(8):2672-2682
以宁夏自治区红寺堡区为例,以1995年、2000年、2005、2010年和2015年5期遥感影像为数据源,综合运用景观格局指数、生态风险指数、空间分析法以及地理探测器等多种研究方法,研究了移民安置区生态风险时空特征。结果表明:1995—2015年研究区景观格局发生了较大的变化,草地面积减少了2.97×10~4hm~2,耕地、林地、建设用地分别增加了1.90×10~4hm~2,0.42×10~4hm~2和0.43×10~4hm~2;在研究期间景观整体斑块数不断增加,其景观整体破碎度随之变大;研究区生态风险主要以较低风险和中风险为主,其中建设用地、沙地和未利用地生态风险值较高,在研究期间生态风险平均值由0.166降低至0.154,研究区生态风险值呈降低趋势。通过地理探测器诊断得出景观斑块数、景观破碎度、景观优势度、景观损失度、斑块密度等因素是安置区生态风险的主要影响因素。  相似文献   

4.
After 50 years of coal mining, Huaibei Mine, located at 50 km southeast of Xuzhou City in East China, has grown to a middle-size city of 600,000 people from a small village of 2000 farmers. The Zhahe Valley, with 400 km2 of a built-up area and more than 100 km2 of subsided peri-urban wetland at the city center, is surrounded by eight exhausted old mines and communities. In cooperation with the local city government, an ecological landuse change assessment and eco-city planning project has been carried out with a focus on the assessment, restoration and enhancement of the wetland as an eco-service to the community. The assessment includes relationships to Green House Gas emissions and heat island effects, as well as measures for a livable, workable, affordable and sustainable human settlement development through industrial transition, landscape design and capacity building. This paper will briefly introduce the main ecological approaches and results of the assessment, including measures such as changing the car-dominated transportation network to a rail-dominated network, transforming the coal-oriented high-carbon industry to a service-oriented low-carbon industry, the C-shape urban form to an O-shape with a green–blue core at the center, and the fragmentized collapsed land to integrative eco-service land.  相似文献   

5.
Zong C  Ma Y  Rong K  Ma J Z  Cheng Z B 《农业工程》2009,29(6):362-366
Cone-cores discarded by Eurasian red squirrels were used to study the habitat selection of Korean pine-seeds hoarding, in forest patch Nos. 16 and 19 in Liangshui Nature Reserve, China. Ten transects with a total length of 15 km were uniformly set, and data from 343 valid samples were collected in a 369 hm2 area. One hundred and eighty four were hoarding samples which were determined according to the cluster analysis based on the number of the cone-cores, while the other 159 were control samples. The principal component analysis, using 11 habitat factors, suggested that the distance from Korean pine forest, forest type, number of Korean pine seedlings, density and type of bush significantly influenced the habitat selection of hoarding by Eurasian red squirrels. The results of Bailey’s method indicated that the squirrels showed (1) preference for natural coniferous forest, natural fir and spruce forest and planted spruce forest; (2) avoidance of planted Korean pine forest and planted larch forest; and (3) random use of natural Korean pine forest. Moreover the distance from the Korean pines in the range of 150–600 m showed no effect on the habitat selection of hoarding by the Eurasian red squirrels. More than 50% of the cone-cores were discarded in either fringe or gap of the Korean pine forest with more cone-cores found at <300 m than at 300 m away (One-Way ANOVA; df = 3, 183, F = 5.76, p = 0.0009). This demonstrated that the Eurasian red squirrels could take the cone-cores out of the Korean pine forest. The density of bushes in samples of hoarding area was significantly lower than that in control samples (Kruskal–Wallis test; df = 1, χ2 = 83.99, p < 0.0001). The number of the Korean pine seedlings in samples of hoarding area was significantly higher than that in the control samples (Kruskal–Wallis test; df = 1, χ2 = 104.13, p < 0.0001). This illustrated that the hoarding habitat favoured the germination of the Korean pine seedlings. In conclusion the behavior of hoarding Korean pine seeds by the Eurasian red squirrels can promote the regeneration and dispersal of the Korean pines.  相似文献   

6.
Western Hubei is the most concentrated area of forest resources in Hubei Province, and the knowledge of the distribution characteristics of ecosystem carbon density is important to understand the regional characteristics of carbon density and its mechanism of formation. Carbon density and factors influencing different layers in the ecosystem were studied by using field data. The average carbon density of ecosystems in western Hubei was 159.05 t/hm2; the carbon density of different forest types in descending order was Abies fargesii forests (362.25 t/hm2), mixed broadleaf-conifer forests (154.13 t/hm2), broad-leaved forests (146.09 t/hm2), and coniferous forests (135.76 t/hm2), and ecosystem carbon density increased with increasing age. The carbon density of the arborous layer, shrub layer, and soil layer of A. fargesii forests was significant higher than that of the other forests (P < 0.05), indicating the carbon storage per unit area of A. fargesii forests, which grow at higher elevations, was the greatest. The carbon density in arborous layers of broad-leaved forests, mixed broadleaf-conifer forests, and coniferous forests was 39.29 t/hm2, 48.99 t/hm2, and 48.39 t/hm2, respectively. Those of the soil layer were 102.96 t/hm2, 100.97 t/hm2, and 82.37 t/hm2, respectively, and there were no significant differences among them. Among the three forest types, carbon density in the litter layer was greater than that of the shrub layer, which indicated the litter layer plays an important role in carbon storage. The carbon density of mixed broadleaf-conifer forests was greatest, excluding A. fargesii forests, in medium (58.71 t/hm2) and mature forests (79.66 t/hm2). Thus, the carbon sink of mixed broadleaf-conifer forests had more potential than the others at the medium and mature forest stage. The soil layer carbon density in different forests constituted 60.67—70.48% of the entire ecosystem, and was 1.70—2.62 times greater than that of the arborous layer. There are many factors influencing ecosystem carbon density, which result from the interaction of environmental and topographical factors. The main explanatory variables of carbon density of the region were altitude, precipitation, and canopy density. The vegetation and soil layer carbon density increased as altitude increased, and the rate of change for every vertical 100 m was 1.3 t/hm2 and 1.9 t/hm2, respectively (P < 0.05). Although the annual average precipitation only affected the carbon density of the vegetation, it increased to 4 t/hm2 (P < 0.01) when average precipitation was >100 mm.  相似文献   

7.
A comprehensive study using ecological engineering analysis was conducted on the influence of the hydrology process in the Yellow River Delta. It was found that water and sediment played an important role in the formation and maintenance of the estuarine wetland. Based on hydrological data (1950–2005), meteorological data (1954–2005) and landscape data produced from integrated Landsat TM images of the Yellow River Delta, the relationship among all the above factors has been analyzed. The results indicated that runoff, sediment discharge and the area of the reed marsh wetland, meadow wetland and tidal wetland had evidently decreased from 1986 to 2001. The runoff and sediment discharge into the Yellow River Delta at a rate of 200–300 × 108 m3 and at 5–8 × 108 t, respectively, were probably the most optimal range for maintaining the stable wetland landscape pattern. Regression analysis and principal component analysis showed that there was a strong positive correlation between the area of wetland landscape and runoff, sediment discharge, whereas there was a negative correlation between the area and the temperature, and there was no significant trend with precipitation levels. The water and sediment discharge are the dominant variable factors of the wetland. Human activities also have an important influence on transformation of wetland types as well as wetland degradation. Therefore, with economic development, climate change and sustainable utilization of resources, great attention should be paid to the changes of natural landscape and their causes.  相似文献   

8.
Liu X L  Chen Q W  Zeng Z X 《农业工程》2009,29(4):249-253
A large quantity of leaf litter was left on soil surface after soybean (Glycine max) harvest in the black soil region, northeast of China, where soybean was planted with the largest area. This paper investigated the effects of different fall tillage practices on soybean leaf litter sequestration into soil, and the subsequently durative effects on soil biological and biochemical properties during the next growing season. Two practices were investigated, fall tillage (T) and no fall tillage (NT) after soybean harvest in autumn. Results showed that the residue biomass on soil surface and in subsoil profile (0–20 cm) after soybean harvest was about 1450 kg ha?1 and 340 kg ha?1, respectively in October 2006. The residue biomass on soil surface and in subsoil profile was about 84 kg ha?1, 1581 kg ha?1 for T, and 423 kg ha?1, 340 kg ha?1 for NT respectively in May 2007. It was obvious that T practice can more effectively sequester leaf litter into soil compared to NT. Results also showed that T practices after soybean harvest eminently improved soil microbial carbon biomass and nitrogen biomass contents, and significantly improved soil urease and acid phosphate activities than NT. No significant difference of dehydrogenase activity was found between N and NT. The positive effects of T treatment on Soil microbial properties and soil enzymes activities among the next growing season due to soybean residues sequestration performed durative profit.  相似文献   

9.
Robert Krö  ger 《农业工程》2010,30(5):280-287
Wetlands are major sources of habitat heterogeneity, with certain environmental variables controlling wetland structure and composition. There is very little information on the heterogeneity of ephemeral floodplain wetland patch mosaics and how hydrogeomorphic circumstance affects composition and structure. Structure (wetland size) and composition (herbaceous species) are two attributes of an ephemeral wetland that are easily quantifiable using a moving window analysis. The moving window analysis is a statistical technique that identifies significant changes in parameters (i.e., structure and composition) along gradients. An analysis of changes in wetland structure and composition longitudinally identified two hydrogeomorphic types and laterally delineated wetland boundaries. The wide–flat type had a wide (131.2 ± 50.4 m) wetland patch and a mean lateral slope of 0.008 ± 0.003, in contrast the narrow–deep type had a significantly smaller (80 ± 40.2 m) and steeper (0.048 ± 0.06) wetland patch. Changes in hydrogeomorphology had distinct effects on the species composition of the wetland. Facultative wetland species such as Sporobolus pyrimidalis and Ischaemum afrum were associated with the wide–flat type, while, the narrow–deep type was characterized by more obligate, flood dependent species such as Phragmites australis, Mariscus congestus, and Eriochloa meyeriana. Internally, the structure and composition of ephemeral wetlands on the northern plains of Kruger National Park were spatially heterogeneous and correlated to hydrogeomorphic conditions, that are identifiable when examined at the wetland scale. Results add knowledge to wetlands as sources of landscape heterogeneity and highlight how environmental variation can result in increases in wetland heterogeneity.  相似文献   

10.
As the largest carbon pool of the terrestrial ecosystem, forest plays a key role in sequestrating and reserving greenhouse gases. With the method of replacing space with time, the typical restoration ecosystems of herb (dominated by Deyeuxia scabrescens, P1), shrub (dominated by Salix paraqplesia, P2), broadleaf (dominated by Betula platyphylla, P3), mixed forest (dominated by Betula spp. and Abies faxoniana, P4), and climax (dominated by Abies faxoniana, P5) were selected to quantify the carbon stock and allocation in the subalpine coniferous forest in Western Sichuan (SCFS). The results indicated that the soil organism carbon (SOC) stock decreased with the depth of soil layer, and the SOC per layer and the total SOC increased largely with the vegetation restoration. The contribution of SOC to the carbon stock of ecosystems decreased with the vegetation restoration from 89.45% to 27.06%, while the quantity was from 94.00 to 223.00 t C hm?2. The carbon stock in ground cover increased with the vegetation restoration, and its contribution to the carbon stock of ecosystems was similar (3–4% of the total). Following the vegetation restoration, the plant carbon stock multiplied and reached to 430.86 ± 49.49 t C hm?2 at the climax phase. During the restoration, the carbon stock of different layers increased, and the contribution of belowground to the carbon stock of ecosystems decreased sharply. The carbon stock on ecosystem scale of the climax phase was 5.89 times that of the herb phase. Our results highlighted that the vegetation restoration in SCFS was a large carbon sink.  相似文献   

11.
The conversion of wetlands and its associated habitat for farming, residential development and commercial purposes has led to many small disconnected patches of native vegetation surrounded by generally inhospitable human altered land uses. Such human interventions pose a serious threat to the survival of wetland dependent indicator species such as the serval (Leptailurus serval) in the Drakensberg Midlands of KwaZulu-Natal, South Africa. To address the effects of habitat fragmentation on serval space use we used GPS fixes of collared individuals for 100 days between May 2013 and January 2014. We tracked five females and eleven male servals with GPS-UHF collars. Fragmentation indices at the class level (wetland, forest with bushland, grassland and cropland) were measured within the collared serval's minimum convex polygon area (MCP) of home range. Serval use points and fragmentation indices were extracted to each sub-landscape unit of 2 km2 falling within the MCP home range. The response of serval population to fragmentation indices was analyzed using generalized linear models at three levels: male, female and the overall population. We found that core area of wetland positively explained landscape use by servals. Effects of forest core area, forest proximity and patch richness were important for landscape use by male servals. Male and female serval use declined with increase in complex shapes of forest and grassland, wetland clumpiness for females and overall, and cropland patches for servals overall. Our results showed that wetland is a key determinant for the survival of male and female servals in fragmented landscapes therefore effective conservation of serval population demands adequate viable native habitat.  相似文献   

12.
Land-use change is a major driver of the global biodiversity crisis, mainly via the fragmentation and loss of natural habitat. Although land-use changes will accelerate to meet humankind's growing demand for agricultural products, conservation planning rarely considers future land uses and how they may affect the connectivity of ecological networks. Here, we integrate land-use models with landscape fragmentation and connectivity analyses, to assess the effects of past and future land-use changes on the connectivity of protected area networks for a highly dynamic region in southeast Spain. Our results show a continued geographical polarisation of land use, with agricultural intensification and urban development in the coastal areas, and the abandonment of traditional land use in the mountains (e.g., 1100 km2 of natural vegetation are projected to be lost in coastal areas whereas 32 km2 of natural vegetation would recover in interior areas from 1991 to 2015). As a result, coastal protected areas will experience increasing isolation. The connectivity analyses reveal that the two protected area networks in place in the study area, the European “Natura 2000” and the Andalusian “RENPA” networks, include many landscape connectors. However, we identify two areas that currently lack protection but contain several important patches for maintaining the region's habitat connectivity: the northwestern and the southwestern slopes of the Sierra Cabrera and Bédar protected area. Our results highlight the importance of considering future land-use trajectories in conservation planning to maintain connectivity at the regional scale, and to improve the resilience of conservation networks.  相似文献   

13.
《Ecological Indicators》2008,8(5):657-663
Northeastern region (NER) of India, one of the largest reserves of forests in India has so far been studied with a view to map the distribution of species or modeling the disturbance regimes and richness analysis. The present study focuses on the importance of regional level studies where the entire NER which is under the threat of forest fragmentation and degradation, is been assessed. In the present study, six historical data sets generated from remote sensing data (1972, 1982, 1987, 1989, 1993 and 1999) are used to assess forest cover loss, shape index and entropy to the degree of forest fragmentation over a multi-decadal period. The assessments have been carried out in the open (40–10% canopy density) and close (>40% canopy density) forest cover classes. The range of shape index and deviation from the actual mean in open forest and closed forest were computed separately. The patches among two categories were further analyzed based on patch area into six classes; ranging from <1 km2 to >500 km2. This also indicates variability of the forest patches. It is noteworthy that patches of area within 1–10 km2 and 10–50 km2 have been severely fragmented. This loss could be attributed to the shifting cultivation practice where the patches of moderate size are cultivated by group of families. The present study could give an insight to the patch configuration and composition in terms of shape index and the Shannon's entropy index.  相似文献   

14.
Bai J H  Ouyang H  Cui B S  Wang Q G  Chen H 《农业工程》2008,28(5):2245-2252
Based on RS, GIS and Apack software, the indices of landscape pattern such as landscape area index, landscape diversity index and landscape fragmentation index were chosen in order to describe changes in the spatial pattern of alpine wetland landscape on the Zoige Plateau during 1966–2000. Results showed that alpine wetland landscape was characteristic of marsh wetlands, which had the biggest patch number and the largest area. The alpine wetland landscape had higher spatial heterogeneity. The largest area appeared in Zoige County with the highest wetland ratio; comparatively, Aba County and Luqu County had much lower wetland ratio. The total area of alpine wetland landscape decreased rapidly during 1966–1986, but it began to increase after 1986. The wetland landscape area shrank by 59857.83 hm2 during 1966–2000. The alpine wetland landscape showed the characteristics of concentrated distribution in the past four decades, with higher convergence and dominance indices. The centroid of wetland landscape moved 12.54 km in the northwest direction firstly, 11.33 km in the southeast direction, and then 1.1 km in the north direction.  相似文献   

15.
Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes.In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south–north productivity gradient.We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m × 0.25 m). All traits varied significantly along the S–N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S–N gradient.Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass).Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.  相似文献   

16.
黑河中游湿地景观破碎化过程及其驱动力分析   总被引:9,自引:0,他引:9  
赵锐锋  姜朋辉  赵海莉  樊洁平 《生态学报》2013,33(14):4436-4449
在遥感和GIS技术支持下,基于1975-2010年长时间序列遥感影像,选取斑块密度指数(PD)、景观内部生境面积指数(IA)、斑块平均面积指数(MPS)、斑块形状破碎化指数(FS1、FS2)等具有典型生态意义的景观指数模型,系统分析了黑河中游湿地景观的破碎化过程,并结合灰色关联分析、主成分分析等方法,探讨了影响研究区湿地景观破碎化过程的各驱动因子.结果表明:近35年来,研究区湿地景观破碎化主要表现为斑块平均面积的萎缩,斑块密度的上升以及斑块形状破碎化指数的增大.整个研究时段内,研究区湿地斑块平均面积减少了48.95hm2,斑块密度的上升0.006个/hm2;导致黑河中游湿地景观破碎化发生和发展的驱动力包含自然和人文两个方面.自然因子对湿地景观破碎化进程的影响则主要体现在气温和降水上,而且气温对湿地景观破碎化进程的影响程度明显大于降水.但在1975-2010年间的这一较小时间尺度上,人类活动对湿地景观破碎化的贡献率明显高于自然因子,人类活动能力的增强以及影响范围的不断扩大是引发黑河中游湿地景观破碎化的主因.  相似文献   

17.
Ecological data obtained from field plots can provide detailed information about ecosystem structure and function. However, this information typically reflects processes that occur over small spatial areas. Accordingly, it is difficult to extrapolate these data to patterns and processes that take place at regional scales. Satellite imagery can provide a means to explore environmental variables over a larger area. Therefore, our main objective was to examine the utility of a regional ecological assessment tool using landscape indicators of ecosystem health in a rapidly developing area of West Georgia near the city of Columbus. Indicator variables included in the assessment were: population density and change, road density, percent forest land-cover, forest patch density, landscape Shannon's Diversity Index, proportion of all streams with roads within 30 m, proportion of area that has agriculture on slopes >3%, proportion of all streams with adjacent agriculture, and proportion of all streams with adjacent forest cover. Cluster analysis was used to combine these variables into different groups, and resulting cluster means were used to rank regional areas according to degree of environmental impact. To assess the spatial accuracy of this tool results were compared to those obtained from a separate plot-level field-based forest condition study. Results derived using the landscape ecological assessment tool suggest that rural areas were the least environmentally impacted (or most healthy) of all areas in West Georgia, and support the findings from the field study. Results for developing areas were mixed between the two different studies and may be attributed to differences in scale. Overall, it appears that this tool is useful for broad generalizations about a given landscape, but is not detailed enough for site-specific management goals due to its inherent coarse spatial resolution (30 m × 30 m). However, these site-specific goals may be achieved using higher resolution (1 m × 1 m) satellite imagery and warrants further research. In any case, this tool is a useful asset for anyone needing a rapid diagnosis of ecosystem health in an inexpensive and timely manner.  相似文献   

18.
Xu L J  Wang B  Yu Z  Sun Q Z 《农业工程》2009,29(3):166-170
Without a robust and healthy root system, establishment, productivity, and persistence are compromised. Consequently, research on alfalfa root morphology and health is very important in development of technology for efficient improvement and production of alfalfa. The objectives of this study were to evaluate the root morphology and health of three alfalfa varieties, Algonquin, Golden Queen, and Yellow Flower and to determine relationships among root morphology traits and root health. Yields from these varieties ranged from 5.83 to 43.93 t/ha, total root length ranged from 215.17 to 708.89 mm, root surface area from 124.95 to 468.37 cm2, volume from 3.24 to 57.72 cm3, and forks from 1.25 × 103 to 10.54 × 103, and tips from 0.65 × 103 to 3.17 × 103. Root infestation score was negatively correlated with yield (r = ?0.997, P < 0.01), and was positively correlated with all root morphology traits (r = 0.466–0.997, P < 0.01), and yield was negatively associated with root morphology traits (r = ?0.755 to ?0.998, p < 0.01) with the exception of root tips (r = 0.448, P < 0.01). Results from these analyses indicated that root infestation score was the lowest averaged over age of alfalfa stand in Algonquin. Yield in 2-year old stands was greater in Golden Queen compared to the other two cultivars.  相似文献   

19.
Buffer zones along rivers and streams can provide water quality services by filtering nutrients, sediment and other contaminants from the surface. Redundancy analysis was used to determine the influence of the landscape pattern at the entire catchment scale and at multiple buffer zone scales (100 m, 300 m, 500 m, 1000 m and 1500 m) on the water quality in a highly urbanised watershed. Change-point analysis was further applied to estimate the specific locations along a gradient of landscape metric that result in a sudden change in the water quality variable. The landscape characteristics for 100 m buffer zones appeared to have a slightly greater influence on the water quality than the entire catchment. The patch density of urban land and the large patch index of water were recognised as the dominant variables influencing the water quality for a 100 m buffer zone. The result of change-point analysis indicated key interval values of the two landscape metrics within the 100 m buffer zone. When the patch density of urban land was >30–40 n/100 ha and the largest patch index of water was >2.5–3.5%, the watershed water quality appeared to be better protected.  相似文献   

20.
Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant–human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km2. Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% CI = 0.99–1.2) elephant/km2. Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being sub-adults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant–human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant–human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant–human conflict of the Anamalai elephant landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号