首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
4-Coumarate:coenzyme A (CoA) ligase (4CL, EC 6.2.1.12) in crude enzyme preparation from the developing xylem of black locust (Robinia pseudoacacia) converted sinapate to sinapoyl CoA. The sinapate-converting activity was not inhibited by other cinnamate derivatives, such as p-coumarate, caffeate or ferulate, in the mixed-substrate assay. The crude extract prepared from the developing xylem was separated by anion-exchange chromatography into three different 4CL isoforms. The isoform 4CL1 had a strong substrate preference for p-coumarate, but lacked the activity for ferulate and sinapate. On the other hand, 4CL2 and 4CL3 displayed activity toward sinapate and also possessed high activity toward caffeate as well as p-coumarate. The crude extract from the shoots exhibited a very similar substrate preference to that of the developing xylem; therefore, 4CL2 may be a major isoform in both crude enzyme preparations. These results support the hypothesis that sinapate-converting 4CL isoform is constitutively expressed in lignin-forming cells.  相似文献   

2.
A. Feutry  R. Letouze 《Phytochemistry》1984,23(8):1557-1559
Hydroxycinnamate: CoA ligase was extracted from stems of in vitro willow cultures and characterized. One peak of activity was obtained after column chromatography on Sephadex G 100 or DEAE Sephacel. p-Coumaric acid gave the highest Vmax among the cinnamates examined. The Kmvalues for p-coumaric, caffeic and ferulic acid were 31.0, 4.7 and 46 μM, respectively. The MW of the CoA ligase was 57 000 and the pH optimum was 7.0. The characteristics of the enzyme correspond to its physiological role in lignin biosynthesis.  相似文献   

3.
4.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

5.
Plant 4-coumarate:coenzyme A ligases, acyl-CoA ligases, peptide synthetases, and firefly luciferases are grouped in one family of AMP-binding proteins. These enzymes do not only use a common reaction mechanism for the activation of carboxylate substrates but are also very likely marked by a similar functional architecture. In soybean, four 4-coumarate:CoA ligases have been described that display different substrate utilization profiles. One of these (Gm4CL1) represented an isoform that was able to convert highly ring-substituted cinnamic acids. Using computer-based predictions of the conformation of Gm4CL1, a peptide motif was identified and experimentally verified to exert a critical influence on the selectivity toward differently ring-substituted cinnamate substrates. Furthermore, one unique amino acid residue present in the other isoenzymes of soybean was shown to be responsible for the incapability to accommodate highly substituted substrates. The deletion of this residue conferred the ability to activate sinapate and, in one case, also 3,4-dimethoxy cinnamate and was accompanied by a significantly better affinity for ferulate. The engineering of the substrate specificity of the critical enzymes that activate the common precursors of a variety of phenylpropanoid-derived secondary metabolites may offer a convenient tool for the generation of transgenic plants with desirably modified metabolite profiles.  相似文献   

6.
The three enzymes required for the production and utilization of l-(+)-3-hydroxybutyrate were sought in various tissues of the rat. All tissues examined contained substantial amounts of (No. 1) l-(+)-3-hydroxybutyryl CoA dehydrogenase (EC 1.1.1.35). The specific activity of (No. 2) l-(+)-3-hydroxybutyryl CoA deacylase (EC 3.1.2) was highest in liver (3.8 mU/mg in mitochondrial matrix (1 U = 1 μmol/min). Brain, heart, and skeletal muscle contained < 20% of this activity. The chromatography of liver mitochondrial “matrix” preparations on DEAE-cellulose resolved the deacylase into two peaks. Peak I hydrolyzed 2- or 3- carbon acylCoA esters more efficiently than l-(+)-3-hydroxybutyrate CoA, while Peak II activity was highest using l-(+)-3-hydroxybutyryl CoA. The Km(app) for Peak II deacylase with l-(+)-3-hydroxybutyryl CoA was 19 μm. Acyl CoA synthetase (EC 6.2.1.2) (No. 3) was assayed with sorbate (sorboyl CoA ligase) or l-(+)-3-hydroxybutyrate (l-(+)-3-hydroxybutyryl CoA ligase). The highest specific activity for l-(+)-3-hydroxybutyryl CoA ligase was associated with brain mitochondria (8.3 mU/mg). In the “matrix” fraction of rat liver mitochondria the activities of these two acyl CoA synthetases were distinguished chromatographically and by their stability at various pH values. Heart and skeletal muscle mitochondria contained <10% of the liver activities of both ligases. These data implicate the liver as a site of l-(+)-3-hydroxybutyrate production.  相似文献   

7.
A metagenome expression library was created from Trinervitermes trinervoides termite hindgut symbionts and subsequently screened for feruloyl esterase (FAE) activities, resulting in seven recombinant fosmids conferring feruloyl esterase phenotypes. The amino acid sequence lengths of the seven FAE encoding open reading frames (ORFs) ranged from 260 to 274 aa and encoded polypeptides of between 28.9 and 31.4 kDa. The highest sequence identity scores for the seven ORFs against the GenBank database were between 45 and 59 % to a number of carboxyl ester hydrolyses. The seven FAE primary structures contained sequence motifs that correspond well with a classical pentapeptide (G-x-S-x-G) serine hydrolyse signature motif which harbours the catalytic serine residue in other FAE families. Six of the seven fae genes were successfully expressed heterologously in Escherichia coli, and the purified enzymes exhibited temperature optima range of 40–70 °C and the pH optima of between 6.5 and 8.0. The k cat/K M ratios for the six characterised FAEs showed the following order of substrate preference: methyl sinapate?>?methyl ferulate?>?ethyl ferulate. All six FAEs showed poor conversion rates against methyl p-coumarate and methyl caffeate, both of which lacked the methoxy (O–CH3) group substituent on the aromatic ring of the ester substrates, emphasising the requirement for at least one methoxy group on the aromatic ring of the hydroxycinnamic acid ester substrate for optimal FAE activity.  相似文献   

8.
H. Kutsuki  T. Higuchi 《Planta》1981,152(4):365-368
The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.Abbreviations CAD cinnamyl alcohol dehydrogenase (EC 1.1.1.-) - OMT caffeate O-methyltransferase (EC 2.1.1-) - PAL phenylalanine ammonia lyase (EC 4.3.1.5) - PCL p-hydroxycinnamate: CoA ligase (EC 6.2.1.12) - PO peroxidase (EC 1.11.1.7)  相似文献   

9.
The anaerobic acetogenic bacterium Acetobacterium woodii couples reduction of caffeate with electrons derived from molecular hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions. Caffeate is activated to caffeyl coenzyme A (caffeyl-CoA) prior to its reduction, and the caffeate reduction operon encodes an ATP-dependent caffeyl-CoA synthetase that is thought to catalyze the initial caffeate activation. The operon also encodes a potential CoA transferase, the product of carA, which was thought to be involved in subsequent ATP-independent caffeate activation. To prove the proposed function of carA, we overproduced its protein in Escherichia coli and then purified it. Purified CarA drives the formation of caffeyl-CoA from caffeate with hydrocaffeyl-CoA as the CoA donor. The dependence of the reaction on caffeate and hydrocaffeyl-CoA followed Michaelis-Menten kinetics, with apparent Km values of 75 ± 5 μM for caffeate and 8 ± 2 μM for hydrocaffeyl-CoA. The enzyme activity had broad ranges of pH and temperature optima. In addition to being able to use caffeate, CarA could use p-coumarate and ferulate but not cinnamate, sinapate, or p-hydroxybenzoate as a CoA acceptor. Neither acetyl-CoA nor butyryl-CoA served as the CoA donor for CarA. The enzyme uses a ping-pong mechanism for CoA transfer and is the first classified member of a new subclass of family I CoA transferases that has two catalytic domains on one polypeptide chain. Apparently, CarA catalyzes an energy-saving CoA loop for caffeate activation in the steady state of caffeate respiration.  相似文献   

10.
3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. Received: 23 September 1996 / Accepted: 28 November 1996  相似文献   

11.
12.
《Journal of molecular biology》2019,431(15):2747-2761
2-Hydroxyisobutyric acid (2-HIBA) is a biomarker of adiposity and associated metabolic diseases such as diabetes mellitus. It is also formed in the bacterial degradation pathway of the fuel oxygenate methyl tert-butyl ether (MTBE), requiring thioesterification with CoA prior to isomerization to 3-hydroxybutyryl-CoA by B12-dependent acyl-CoA mutases. Here, we identify the adenylating enzymes superfamily member 2-HIBA-CoA ligase (HCL) in the MTBE-degrading bacterium Aquincola tertiaricarbonis L108 by knockout experiments. To characterize this central enzyme of 2-HIBA metabolism, ligase activity kinetics of purified HCL and its X-ray crystal structures were studied. We analyzed the enzyme in three states, which differ in the orientation of the two enzyme domains. A 154° rotation of the C-terminal domain accompanies the switch from the adenylate- into the thioester-forming state. Furthermore, a third conformation was obtained, which differs by 50° and 130° from the adenylation and thioesterification states, respectively. Phylogenetic and structural analysis reveals that HCL defines a new subgroup within phenylacetate-CoA ligases (PCLs) thus far described to exclusively accept aromatic acyl substrates. In contrast, kinetic characterization clearly demonstrated that HCL catalyzes CoA activation of several aliphatic short-chain carboxylic acids, preferentially 2-HIBA. Compared to the classical PCL representatives PaaK1 and PaaK2 of Burkholderia cenocepacia J2315, the acyl binding pocket of HCL is significantly smaller and more polar, due to unique active-site residues Y164 and S239 forming H-bonds with the OH-group of the acyl substrate moiety. Furthermore, HCL and PaaK topologies illustrate the evolutionary steps leading from a homodimeric to the fused monomeric core fold found in other ligases.  相似文献   

13.
The functions of two long-chain fatty acid CoA ligase genes (facl) in crude oil-degrading Geobacillus thermodenitrificans NG80-2 were characterized. Facl1 and Facl2 encoded by GTNG_0892 and GTNG_1447 were expressed in Escherichia coli and purified as His-tagged fusion proteins. Both enzymes utilized a broad range of fatty acids ranging from acetic acid (C2) to melissic acid (C30). The most preferred substrates were capric acid (C10) for Facl1 and palmitic acid (C16) for Facl2, respectively. Both enzymes had an optimal temperature of 60 °C, an optimal pH of 7.5, and required ATP as a cofactor. Thermostability of the enzymes and effects of metal ions, EDTA, SDS and Triton X-100 on the enzyme activity were also investigated. When NG80-2 was cultured with crude oil rather than sucrose as the sole carbon source, upregulation of facl1 and facl2 mRNA was observed by real time RT-PCR. This is the first time that the activity of fatty acid CoA ligases toward long-chain fatty acids up to at least C30 has been demonstrated in bacteria.  相似文献   

14.
A change in the metabolism of hydroxycinnamic acids in wounded tomato fruits (Lycopersicon esculentum) .
Healing of lesions in tomato fruits (Lycopersicon esculentum Mill. var. cerasiforme ) is partly due to lignification of cells bordering the wounded zones. The pericarp of healthy fruits contains a high level of hydroxycinnamic derivatives but never shows lignification. Thus, the reaction of the fruit to wounding seems to be a change in the metabolism, leading to the formation of monomeric units of which lignins are constituted. Hydroxycinnamate:CoA ligase (EC 6.2.1.12; CL) and O-methyltransferase (EC 2.1.1.6; OMT) appear to play an important role in this change. In wounded fruits CL acts preferentially on p-coumarate and ferulate as compared to caffeate, and OMT is particularly active with 5-OH ferulate as substrate. These changes lead to the formation of p-coumaroyl CoA, feruloyl CoA and sinapate, which are incorporated into lignin. Phenylalanine ammonialyase (EC 4.3.1.5) and glucosyltransferase activities increase greatly after wounding, whereas the activity of hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase decreases. These data complement those previously reported on peroxidases and suggest that, after the increase of enzyme activities, monomeric units are formed and then polymerized by some peroxidases specific for lignification.  相似文献   

15.
Hydroxycinnamates, aromatic compounds that play diverse roles in plants, are dissimilated by enzymes encoded by the hca genes in the nutritionally versatile, naturally transformable bacterium Acinetobacter sp. strain ADP1. A key step in the hca-encoded pathway is activation of the natural substrates caffeate, p-coumarate, and ferulate by an acyl:coenzyme A (acyl:CoA) ligase encoded by hcaC. As described in this paper, Acinetobacter cells with a knockout of the next enzyme in the pathway, hydroxycinnamoyl-CoA hydratase/lyase (HcaA), are extremely sensitive to the presence of the three natural hydroxycinnamate substrates; Escherichia coli cells carrying a subclone with the hcaC gene are hydroxycinnamate sensitive as well. When the hcaA mutation was combined with a mutation in the repressor HcaR, exposure of the doubly mutated Acinetobacter cells to caffeate, p-coumarate, or ferulate at 10−6 M totally inhibited the growth of cells. The toxicity of p-coumarate and ferulate to a ΔhcaA strain was found to be a bacteriostatic effect. Although not toxic to wild-type cells initially, the diphenolic caffeate was itself converted to a toxin over time in the absence of cells; the converted toxin was bactericidal. In an Acinetobacter strain blocked in hcaA, a secondary mutation in the ligase (HcaC) suppresses the toxic effect. Analysis of suppression due to the mutation of hcaC led to the development of a positive-selection strategy that targets mutations blocking HcaC. An hcaC mutation from one isolate was characterized and was found to result in the substitution of an amino acid that is conserved in a functionally characterized homolog of HcaC.  相似文献   

16.
The two methylation reactions, i.e. caffeate to ferulate (FA) and 5-hydroxyferulate to sinapate (SA), in the biosynthesis of guaiacyl and syringyl lignins in angiosperms were demonstrated to be catalyzed by the same enzyme in bamboo. This follows from the facts that: the ratio (SA/FA) obtained for O-methyltransferase remains constant during purification of the enzyme; chromatography on DEAE-cellulose, Sephadex G100 and G200, and analyses by polyacrylamide gel electrophoresis and isoelectric focusing in pH gradients showed that the two methylating activities belonged to a single enzyme protein; caffeate and 5-hydroxyferulate compete each other in the formation of the enzyme-substrate complex, the latter substrate showing greater affinity for the enzyme. Thus, feedback control may operate at the methylation step, caffeate to FA, in biosynthesis of angiosperm lignin.  相似文献   

17.
Benzoate:CoA ligase (BZL) was partially purified from flowers of the annual California plant Clarkia breweri. BZL catalyzes the formation of benzoyl-CoA and anthraniloyl-CoA, important intermediates for subsequent acyltransferase reactions in plant secondary metabolism. The native enzyme is active as a monomer with a molecular mass of approximately 59-64.5 kDa, and it has K(m) values of 45, 95, and 130 microM for benzoic acid, ATP, and CoA, respectively. BZL is most active in the pH range of 7.2-8.4, and its activity is strictly dependent on certain bivalent cations. BZL is an AMP-forming enzyme. Overall, its properties suggest that it is related to the family of CoA ligase enzymes that includes the plant enzyme 4-hydroxycinnamate:CoA ligase.  相似文献   

18.
Determination of acid hydrolases in human platelets   总被引:3,自引:0,他引:3  
A method is described which allows the preparation of pure cinnamoyl-CoA thiolesters in high yields. This procedure utilizes a partially purified cinnamoyl-CoA ligase obtained from a strain of Pseudomonas putida and some properties of this new enzyme are described. Product isolation involves polyamide column chromatography which allows the purification of 50-mg batches of thiolesters. The method is applicable to a range of cinnamic acids, and is particularly suitable in preparing the biologically important CoA esters of p-coumarate, ferulate, and caffeate.  相似文献   

19.
Abstract The photometabolism of phenylpropenoic acids by Rhodopseudomanas palustris was investigated. There was a marked CO2 dependence for growth on 4-hydroxycinnamate, ferulate and caffeate. Two distinct phenylpropenoyl-Coenzyme A synthetase activities, PCSI and PCSII, differing in their substrate specificity and regulation, were detected in cell extracts of R. palustris . Both enzymes activated trans -cinnamate whereas PCSII also activated 4-hydroxycinnamate, ferulate and caffeate. PCSI was found to be constitutive whilst PCSII was only induced significantly during growth on aromatic acids with side-chains. It is suggested that these enzymes catalyse the initial step in the anaerobic β-oxidation of the side-chains of phenylpropenoic acids.  相似文献   

20.
The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号