首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of dianthramides, dianthalexin and other phenolic compounds in carnation cells at different times before and after inoculation of plants with Fusarium oxysporum f. sp. dianthi, and the development of wilt symptoms were compared for eleven carnation cultivars. Untreated and water-treated controls contained only a little acetone-extractable phenolics. Upon inoculation with F. oxysporum f. sp dianthi, all cultivars accumulated the same range of phenolic compounds, including several dianthramides and dianthalexin, but in different proportions. The total amount of accumulated phenolic compounds per fresh material weight of the extracted stem segments could not be related to the disease resistance level of the different cultivars. However, the accumulation of dianthramides and dianthalexin in the cultivars was positively correlated to resistance, while the accumulation of two other, as yet unidentified, compounds was inversely related to resistance.  相似文献   

2.
Summary Fusarium oxysporum f. sp.dianthi, pathogenic on carnation plants is very sensitive toBacillus subtilis M51 inhibition.Fusarium oxysporum disease (fusariosis) is prevented for a period of two months after treatment of plants withBacillus subtilis M51. The persistence ofB. subtilis M51, marked for selenomycin resistance (MZ51) and inoculated on the roots of carnation cuttings was studied. Soil used was two types: naturally infested withFusarium oxysporum and free from this pathogen. Bacterial cells presence on the roots was detected by direct plating and the presence of the pathogen in the roots was investigated by histological assays. Evidence gathered by these procedures suggest that plant protection is dependent on the physical presence ofB. subtilis M51 cells on the roots.  相似文献   

3.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

4.
Callus cultures derived from internodal segments of two cultivars of carnation susceptible to Fusarium oxysporum f.sp. dianthi were successfully used for in vitro selection for resistance to this pathogenic fungus. Resistant lines were selected by culturing calli on growth medium containing various concentrations of the culture filtrate of F. oxysporum f.sp. dianthi. Resistant calli obtained after two cycles (25 days/cycle) of selection were used for plant regeneration. About 32% of the plants regenerated from the resistant calli had acquired considerable resistance against the pathogen in the field. No phenotypic variation was observed in the selected regenerates.  相似文献   

5.
The influence of culture filtrates of Fusarium oxysporum f.sp. dianthi which causes Fusarium wilt was investigated on growth and viability of carnation tissue cultures and leaf segments. Culture filtrates of avirulent race 1 of this fungus did not affect calli and leaf segments of cultivars both susceptible and resistant to Fusarium wilt. However, culture filtrates of virulent race 2 decreased viability and suppressed growth of callus of the susceptible cultivar. In contrast, callus of the resistant cultivar showed resistance to the culture filtrates. The results of these experiments may provide information on methods of selection of new wilt resistant carnation varieties.Abbreviations A270 absorbance at 270 nm - 2,4-d 2,4-dichlorophenoxyacetic acid - CF-MCD culture filtrate of 16064 grown in MCD medium - MCD medium modified Czapeck-Dox medium - MS medium basal medium of Murashige and Skoog - MW molecular weight - PD medium potato dextrose medium - TTC 2,3,5-triphenyl tetrazolium chloride  相似文献   

6.
Vascular wilt of carnation caused by Fusarium oxysporum f. sp. dianthi (Prill. & Delacr.) W. C. Synder & H.N. Hans inflicts substantial yield and quality loss to the crop. Mycolytic enzymes such as chitinases are antifungal and contribute significantly to the antagonistic activity of fluorescent pseudomonads belonging to plant-growth-promoting rhizobacteria. Fluorescent pseudomonads antagonistic to the vascular wilt pathogen were studied for their ability to grow and produce chitinases on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and enzyme production with increased anti-fungal activity against the pathogen. Furthermore, the cell-free bacterial culture filtrate from chitin-containing media also significantly inhibited the mycelial growth. Both the strains and their cell-free culture filtrate from chitin-amended media showed the formation of lytic zones on chitin agar, indicating chitinolytic ability. Extracellular proteins of highly antagonistic bacterial strain were isolated from cell-free extracts of media amended with chitin and fungal cell wall. These cell-free conditioned media contained one to seven polypeptides. Western blot analysis revealed two isoforms of chitinase with molecular masses of 43 and 18.5 kDa. Further plate assay for mycelial growth inhibition showed the 43-kDa protein to be antifungal. The foregoing studies clearly established the significance of chitinases in the antagonism of fluorescent pseudomonads, showing avenues for possible exploitation in carnation wilt management.  相似文献   

7.
A new chromene, cumanensic acid (1), together with eight known compounds have been isolated from the aerial part of Piper cf. cumanense Kunth (Piperaceae). Chromene structure was identified on the basis of spectroscopic analysis and comparison with literature data. The compound showed antifungal activity against Fusarium oxysporum f. sp. dianthi and Botrytis cinerea.  相似文献   

8.
The options for managing Fusarium wilt in greenhouse cucumbers are limited by our poor understanding of the modes of survival and dissemination of the pathogen. This study uses a specific quantitative real‐time PCR assay for Fusarium oxysporum f. sp. cucumerinum to investigate the significance of flying insects as aerial vectors of the pathogen in a commercial cucumber greenhouse. Shore flies were more frequently detected (35.5%) carrying F. oxysporum f. sp. cucumerinum than sciarids (25%), with both species carrying between 1 × 102 and 1 × 106 pathogen genome copies/individual. Sciarid and shore flies acquired F. oxysporum f. sp. cucumerinum following exposures to agar cultures of the pathogen of up to 94 h. Light microscopy revealed that spores were carried externally on the bodies of the adult flies. The ability of adult sciarid flies to vector the pathogen from peat‐grown diseased cucumber plants and infect healthy cucumber plants was demonstrated in a caged glasshouse trial. An inoculum density trial showed that vascular wilt disease was initiated after inoculation of peat‐grown seedlings with as few as 1000 conidia. We conclude that sciarid and shore flies play significant roles as vectors of F. oxysporum f. sp. cucumerinum in greenhouse cucumbers and need to be recognized in developing integrated crop management strategies.  相似文献   

9.
Polyclonal antiserum was elicited against a strain of Fusarium oxysporum f.sp. narcissi (GCRI80/26) and a specific and sensitive enzyme-linked immunosorbent assay developed. Antiserum raised to cell wall fractions gave better recognition than that to cytoplasmic fractions. Recognition was equally good in artificially and naturally infected bulbs. Little cross-reactivity in bulb tissue was shown by three other bulb-rotting fungi. Nine isolates of F. oxysporum f.sp. narcissi from a wide geographic area gave similar results in an indirect ELISA of mycelial extracts, although some cross-reactivity was observed with two other Fusarium spp. Four Fusarium spp. and four other fungi showed little cross-reactivity. Ten days after inoculation the pathogen was readily detected in the base plate area of three Narcissus cultivars and points remote from the inoculation site in the most susceptible cultivar. A direct correlation was observed between positive results in the enzyme-linked immunosorbent assay and recovery of the pathogen on selective medium.  相似文献   

10.
The phenol compositions of two cultivars of carnation (Dianthus caryophyllus) namely "Gloriana" and "Roland", which are partially and highly resistant, respectively, to Fusarium oxysporum f. sp. dianthi have been investigated with the aim of determining if endogenous phenols could have an anti-fungal effect against the pathogen. Analyses were performed on healthy and F. oxysporum-inoculated in vitro tissues, and on in vivo plants. Two benzoic acid derivatives, protocatechuic acid (3,4-dihydroxybenzoic acid) and vanillic acid (4-hydroxy-3-methoxybenzoic acid), were found within healthy and inoculated tissues of both cultivars, together with the flavonol glycoside peltatoside (3-[6-O-(alpha-L-arabinopyranosyl)-beta-D-glucopyranosyl] quercetin). These molecules proved to be only slightly inhibitory towards the pathogen. 2,6-Dimethoxybenzoic acid was detected in small amounts only in the inoculated cultivar "Gloriana", while the highly resistant cultivar "Roland" showed the presence of the flavone datiscetin (3,5,7,2'-tetrahydroxyflavone). The latter compound exhibited an appreciable fungitoxic activity towards F. oxysporum f. sp. dianthi.  相似文献   

11.
12.
The bayoud disease, vascular fusariosis of date palm tree (Phoenix dactylifera L.), is caused by the pathogenic fungus Fusarium oxysporum f. sp. albedinis. The characteristic symptoms of the bayoud disease were elicited on detached leaves of F. oxysporum f. sp. albedinis‐susceptible cultivars of date palm trees, which were treated either with the FII (F. oxysporum f. sp. albedinis) fraction purified from the organic extracts of a F. oxysporum f. sp. albedinis liquid culture, or with a solution of fusaric acid. Enniatins, which are secreted by several Fusarium species, were tested at different concentrations and were not capable of inducing symptoms on such detached leaves. The FII (F. oxysporum f. sp. albedinis) fraction was unable to induce necrosis of potato slices, which indicates that it does not contain significant amounts of enniatins. The high‐performance liquid chromatography (HPLC) profiles of the FII (F. oxysporum f. sp. albedinis) fraction showed toxic peaks different from fusaric acid. A fraction, named FII (AZ4), was obtained from culture filtrates of a saprophytic Fusarium strain maintained in the same cultural conditions as for the F. oxysporum f. sp. albedinis. The HPLC profile of the FII (AZ4) fraction did not show the characteristic phytotoxic peaks present in the FII (F. oxysporum f. sp. albedinis) fraction. This finding well agrees with the fact that the FII (AZ4) fraction is not toxic to detached date palm leaves. Moreover, the HPLC profiles of FII fractions obtained from other special forms of F. oxysporum are different the FII (F. oxysporum f. sp. albedinis) profile. The phytotoxic compounds purified from the FII (F. oxysporum f. sp. albedinis) fraction are probably new molecules that may help in understanding the pathogenesis of bayoud disease.  相似文献   

13.
A flavonoid glycoside, kaempferol 3-O-β-d-glucopyranosyl (1  2)-O-β-d-glucopyranosyl (1  2)-O-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (1), along with two known C- and O-flavonoid glycosides (2 and 3, respectively), were isolated from carnation (Dianthus caryophyllus). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds and other flavonoid glycoside analogues exhibited antifungal activity against different Fusarium oxysporum f.sp. dianthi pathotypes.  相似文献   

14.
Serratia liquefaciens provided better protection of carnations from infection by Fusarium oxysporum f. sp. dianthi, than did Hafnia alvei. The protection occurred when the bacterial isolates were applied to the cuttings before rooting, but not when applied to the root system of rooted cuttings. S. liquefaciens was recovered from carnation stem segments along the stem up to the top after 60 days but after 120 days they were recovered only up to 2.5cm. Zones of inhibition of Fusarium-conidia sprayed on agar plates previously incubated with stem segments appeared around the bacterial colonies of S. liquifaciens after additional incubation for 24—48h.  相似文献   

15.
A new isolate of Trichoderma harzianum (T-35) was isolated from the rhizosphere of cotton plants from a field infested with Fusarium. Under glasshouse conditions, the antagonist was applied to soil growing in a bran/peat mixture (1:1, v/v) or as a conidial suspension or used as a seed coating. When T. harzianum was tested against Fusarium oxysporum f. sp. vasinfectum, F. oxysporum f. sp. melonis or F. roseum‘Culmorum”, a significant disease reduction, was obtained in cotton, melon and wheat, respectively. Biological control of Fusarium wilt of cotton was achieved when tested at two inoculum levels of the pathogen (2 × 107 and 2 × 108 microconidia/kg soil), decreasing the Fusarium spp. soil population. The long term effect of T. harzianum on Fusarium wilt of cotton was studied using successive plantings. The antagonist persisted in soil throughout three consecutive plantings, reducing the Fusarium, wilt incidence in each growth cycle. At the first planting the largest amount of preparation was found superior, whereas at the third planting, no significant difference could be observed between the four rates of Trichoderma preparation. T. harzianum (T-35) controlled Fusarium wilt in cotton and muskmelon when applied in both naturally or artificially infested alluvial vertisol and sandy-loam soils, respectively. Soil or seed treatments with the antagonist provided a similar disease control of F. roseum‘Culmorum’ and of F. oxysporum f. sp. melonis.  相似文献   

16.
Effects of treatment with phenylthiosemicarbazide (PTS) and its 4′-chloro-derivative (4′-chloro-PTS) on Fusarium wilt of pea and tomato plants were investigated. Depending on pH and availability of oxygen, PTS and 4′-chloro-PTS are converted to their corresponding phenylazothioformamides and phenylazothioformamide-S-oxides, which are the actual fungitoxic compounds. PTS and 4′-chloro-PTS were shown to inhibit growth of Fusarium oxysporum f. pisi and F. oxysporum f. lycopersici in liquid media as well as on agar plates at concentrations of 50–100 mg/1. Inhibition was greater at pH 7 than at pH 5. When administered to pea and tomato plants, both compounds caused severe phytotoxic effects, especially at temperatures favouring Fusarium wilt, thus almost entirely obscuring any protective activity against the diseases. All compounds were strongly adsorbed to loam, but readily released from sand. Neither in pea nor in tomato plants were PTS and 4′-chloro-PTS converted to any fungitoxic substance, not already present in the aqueous solutions administered.  相似文献   

17.
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.  相似文献   

18.
Fusarium oxysporum f.sp. cubense is the causal pathogen of wilt disease of banana. A cost-effective measure of control for this disease is still not available. Streptomyces violaceusniger strain G10 acts as an antifungal agent antagonistic towards many different phytopathogenic fungi, including different pathogenic races of the Fusarium wilt pathogen. In an attempt to understand the mode of action of this antagonist in nature, the interaction between S. violaceusniger strain G10 and F. oxysporum f.sp. cubense was first studied by paired incubation on agar plates. Evidence for the in vitro antibiosis of strain G10 was demonstrated by inhibition zones in the “cross-plug” assay plates. Microscopic observations showed lysis of hyphal ends in the inhibited fungal colonies. Culture of strain G10 in liquid media produces antifungal metabolites, which showed in vitro antagonistic effects against F. oxysporum f.sp. cubense such as swelling, distortion and excessive branching of hyphae, and inhibition of spore germination. An indirect method was used to show that antibiosis is one of the mechanisms of antagonism by which strain G10 acts against F. oxysporun f.sp. cubense in soil. This study suggests the potential of developing strain G10 for the biological control of Fusarium wilt disease of banana. Journal of Industrial Microbiology & Biotechnology (2002) 28, 303–310 DOI: 10.1038/sj/jim/7000247 Received 08 August 2001/ Accepted in revised form 16 February 2002  相似文献   

19.
New benzoic acid derivative (1), together with five known compounds has been isolated from the inflorescences of Piper cf. cumanense Kunth (Piperaceae). The structure was identified on basis of spectroscopic analysis and comparison with literature data. The compound (1) showed antifungal activity against Fusarium oxysporum f. sp. dianthi and Botrytis cinerea.  相似文献   

20.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号