首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
2.

Aim

We previously found that chronic tuberous sclerosis protein 2 (TSC2) deletion induces activation of mammalian target of rapamycin Complex 1 (mTORC1) and leads to hypertrophy of pancreatic beta cells from pancreatic beta cell-specific TSC2 knockout (βTSC2−/−) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells.

Methods

Isolated islets from βTSC2−/− mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes.

Results

Activation of mTORC1 increased mitochondrial DNA expression, mitochondrial density and ATP production in pancreatic beta cells of βTSC2−/− mice. In TSC2 knockdown INS-1 cells, mitochondrial DNA expression, mitochondrial density and ATP production were increased compared with those in control INS-1 cells, consistent with the phenotype of βTSC2−/− mice. TSC2 knockdown INS-1 cells also exhibited augmented insulin secretory response to glucose. Rapamycin inhibited mitochondrial DNA expression and ATP production as well as insulin secretion in response to glucose. Thus, βTSC2−/− mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.

Conclusion

Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells.  相似文献   

3.
TSC1 and TSC2 mutations cause neoplasms in rare disease pulmonary LAM and neuronal pathfinding in hamartoma syndrome TSC. The specific roles of TSC1 and TSC2 in actin remodeling and the modulation of cell motility, however, are not well understood. Previously, we demonstrated that TSC1 and TSC2 regulate the activity of small GTPases RhoA and Rac1, stress fiber formation and cell adhesion in a reciprocal manner. Here, we show that Tsc1−/− MEFs have decreased migration compared to littermate-derived Tsc1+/+ MEFs. Migration of Tsc1−/− MEFs with re-expressed TSC1 was comparable to Tsc1+/+ MEF migration. In contrast, Tsc2−/− MEFs showed an increased migration compared to Tsc2+/+ MEFs that were abrogated by TSC2 re-expression. Depletion of TSC1 and TSC2 using specific siRNAs in wild type MEFs and NIH 3T3 fibroblasts also showed that TSC1 loss attenuates cell migration while TSC2 loss promotes cell migration. Morphological and immunochemical analysis demonstrated that Tsc1−/− MEFs have a thin protracted shape with a few stress fibers; in contrast, Tsc2−/− MEFs showed a rounded morphology and abundant stress fibers. Expression of TSC1 in either Tsc1−/− or Tsc2−/− MEFs promoted stress fiber formation, while TSC2 re-expression induced stress fiber disassembly and the formation of cortical actin. To assess the mechanism(s) by which TSC2 loss promotes actin re-arrangement and cell migration, we explored the role of known downstream effectors of TSC2, mTORC1 and mTORC2. Increased migration of Tsc2−/− MEFs is inhibited by siRNA mTOR and siRNA Rictor, but not siRNA Raptor. siRNA mTOR or siRNA Rictor promoted stress fiber disassembly in TSC2-null cells, while siRNA Raptor had little effect. Overexpression of kinase-dead mTOR induced actin stress fiber disassembly and suppressed TSC2-deficient cell migration. Our data demonstrate that TSC1 and TSC2 differentially regulate actin stress fiber formation and cell migration, and that only TSC2 loss promotes mTOR- and mTORC2-dependent pro-migratory cell phenotype.  相似文献   

4.
Atorvastatin is widely used to lower blood cholesterol and to reduce risk of cardiovascular disease–associated complications. Epidemiological investigations and preclinical studies suggest that statins such as atorvastatin have antitumor activity for various types of cancer. Tuberous sclerosis (TSC) is a tumor syndrome caused by TSC1 or TSC2 mutations that lead to aberrant activation of mTOR and tumor formation in multiple organs. Previous studies have demonstrated that atorvastatin selectively suppressed growth and proliferation of mouse Tsc2 null embryonic fibroblasts through inhibition of mTOR. However, atorvastatin alone did not reduce tumor burden in the liver and kidneys of Tsc2+/? mice as assessed by histological analysis, and no combination therapy of rapamycin and atorvastatin has been tried. In this study, we used T2-weighted magnetic resonance imaging to track changes in tumor number and size in the kidneys of a Tsc1+/? mouse model and to assess the efficacy of rapamycin and atorvastatin alone and as a combination therapy. We found that rapamycin alone or rapamycin combined with atorvastatin significantly reduced tumor burden, while atorvastatin alone did not. Combined therapy with rapamycin and atorvastatin appeared to be more effective for treating renal tumors than rapamycin alone, but the difference was not statistically significant. We conclude that combined therapy with rapamycin and atorvastatin is unlikely to provide additional benefit over rapamycin as a single agent in the treatment of Tsc-associated renal tumors.  相似文献   

5.

Background

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurological disorder characterized by selective degeneration of upper and lower motor neurons. The primary triggers for motor neuron degeneration are unknown but inflammation, oxidative stress and mitochondrial defects have been identified as potential contributing factors. Metformin is an anti-type II diabetes drug that has anti-inflammatory and anti-oxidant properties, can bring about mitochondrial biogenesis and has been shown to attenuate pathology in mouse models of Huntington''s disease and multiple sclerosis. We therefore hypothesized that it might increase survival in the SOD1G93A murine model of ALS.

Methodology/Principal Findings

Treatment of male and female SOD1G93A mice (n = ≥6 per sex) with 2 mg/ml metformin in the drinking water from 35 days, resulted in a significant increase in motor unit survival, as measured by in vivo electrophysiology at 100 days, in male EDL muscles (24+/−2 vs. 14+/−2 motor units, p<0.005) and female TA muscles (21+/−1 vs. 15+/−2 motor units, P = 0.0134). We therefore continued to test the effect of 0.5, 2 and 5 mg/ml metformin in the drinking water from 35 days on disease onset and progression (identified by twice weekly determination of weight and neurological score) as well as survival in male and female SOD1G93A mice (n = ≥14 per sex). Results for all groups were compared using Kaplan-Meier time to event analyses. In this survival study, metformin was unable to reduce pathology at any dose and had an unexpected dose-dependent negative effect on the onset of neurological symptoms (P = 0.0236) and on disease progression (P = 0.0362) in female mice.

Conclusions/Significance

This study suggests that metformin is a poor candidate for clinical trial in ALS patients and that the possibility of harmful effects of metformin in female ALS patients with type II diabetes should be investigated.  相似文献   

6.
The PI3K-Akt-mTOR pathway plays crucial roles in regulating both innate and adaptive immunity. However, the role of TSC1, a critical negative regulator of mTOR, in peripheral T cell homeostasis remains elusive. With T cell-specific Tsc1 conditional knockout (Tsc1 KO) mice, we found that peripheral naïve CD8+ T cells but not CD4+ T cells were severely reduced. Tsc1 KO naïve CD8+ T cells showed profound survival defect in an adoptive transfer model and in culture with either stimulation of IL-7 or IL-15, despite comparable CD122 and CD127 expression between control and KO CD8+ T cells. IL-7 stimulated phosphorylation of Akt(S473) was diminished in Tsc1 KO naïve CD8+T cells due to hyperactive mTOR-mediated feedback suppression on PI3K-AKT signaling. Furthermore, impaired Foxo1/Foxo3a phosphorylation and increased pro-apoptotic Bim expression in Tsc1 KO naïve CD8+T cells were observed upon stimulation of IL-7. Collectively, our study suggests that TSC1 plays an essential role in regulating peripheral naïve CD8+ T cell homeostasis, possible via an mTOR-Akt-FoxO-Bim signaling pathway.  相似文献   

7.
8.
The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1. mTORC1-mediated increase in hypoxia-inducible factor 1α (HIF1α) abundance, which occurs in the absence of serum in normoxic Tsc2-deficient cells, contributes to these changes. Increased HIF1α abundance in these cells is attributed to both an increased level and the sustained translation of HIF1α mRNA. Sustained glycogen synthase kinase 3β inhibition and Mcl-1 expression also contribute to the apoptotic resistance of Tsc2-deficient cells to serum deprivation. The inhibition of mTORC1 activity by either rapamycin or Raptor knockdown cannot resensitize these cells to serum deprivation-induced apoptosis because of elevated Akt activity that is an indirect consequence of mTORC1 inhibition. However, the increased HIF1α abundance and the maintenance of Mcl-1 protein expression in serum-deprived Tsc2−/ cells are dependent largely on the hyperactive eIF4E in these cells. Consistently, the reduction of eIF4E levels abrogates the resistance of Tsc2−/ cells to serum deprivation-induced apoptosis.Growth factors are obligatory for the survival of mammalian cells. The evolutionarily conserved kinase Akt has emerged as the predominant and indispensable mediator of the ability of growth factors to promote cell survival in mammalian cells (reviewed in reference 9). Akt promotes cell survival by multiple mechanisms, including key roles in regulating cellular energy metabolism. Akt maintains mitochondrial integrity and inhibits apoptosis at least in part through effects on mitochondrial hexokinases and their functionally coupled facilitated glucose transporters (reviewed in reference 18). One of the most crucial functions of Akt involves the activation of the mammalian target of rapamycin complex 1 (mTORC1), which integrates growth factor signaling with nutritional cues and synchronizes these upstream signals with the downstream stimulation of cell growth and proliferation (reviewed in reference 1). Akt activates mTORC1 in part by inhibiting the heterodimeric tuberous sclerosis complex (Tsc1/Tsc2). Tsc2 (or tuberin) functions as a GTPase-activating protein (GAP) to specifically inhibit the small GTPase Rheb, which activates mTORC1. The formation of a functional heterodimeric complex between Tsc2 and Tsc1 (or hamartin) is required for mTORC1 inhibition. As such, the disruption of the expression or function of either Tsc1 or Tsc2 is sufficient to activate mTORC1. Mammalian cells have evolved a negative feedback mechanism between mTORC1 and Akt to maintain an optimal balance between their activities. When Akt activates mTORC1, it initiates a negative feedback loop that serves to attenuate Akt activity. As such, mTORC1 serves as both an upstream and a downstream effector of Akt signaling. The loss of a functional Tsc1/Tsc2 complex disrupts this delicate balance, resulting in mTORC1 hyperactivity, which greatly reduces Akt activation (reviewed in reference 1). This is relevant to the heritable development of tuberous sclerosis in humans, which is caused by the mutational inactivation of either the TSC1 or TSC2 gene, leading to benign hamartoma formation and growth in a variety of organs (11).It is widely appreciated that low basal Akt activity renders Tsc1/2-deficient cells more sensitive to proapoptotic stimuli (4, 19). Unexpectedly, however, we found that both Tsc1 and Tsc2 null cells exhibit increased apoptotic resistance to growth factor withdrawal despite greatly reduced Akt activity relative to that of their wild-type counterparts. This implies that Tsc1/2 deficiency promotes or unmasks potent antiapoptotic mechanisms that reduce mammalian cell dependence upon growth factors and Akt for survival. Further investigation has uncovered a critical role for mTORC1 in promoting cell survival in the absence of growth factors.Trophic growth factors found in serum play a pivotal role in the cellular uptake and utilization of glucose, and serum withdrawal results in attenuated glucose metabolism. The maintenance of glucose utilization by the overexpression of the rate-limiting glycolytic enzyme hexokinase and its functionally coupled facilitative glucose transporters maintains cell survival in the absence of growth factors (reviewed in reference 18). We found that serum deprivation markedly increased both hexokinase II (HKII) and GLUT1 abundance in Tsc2-deficient cells, and the knockdown of HKII and GLUT1 increased the apoptotic susceptibility of these cells to serum deprivation. The elevated expression of HKII and GLUT1 is mediated by hypoxia-inducible factor 1α (HIF1α) protein, which is markedly induced by mTORC1 in serum-deprived Tsc2−/ cells.In addition to increased HKII and GLUT1 expression, Tsc2−/ cells display the sustained inhibition of glycogen synthase kinase 3 (GSK3) activity and stable Mcl-1 abundance following serum withdrawal, which also contribute to their apoptotic resistance under these conditions. Mcl-1 abundance, which normally declines following serum deprivation, is sustained in Tsc2−/ cells by the constitutive inhibition of GSK3 and the activation of eIF4E.  相似文献   

9.
Frequent alteration of upstream proto-oncogenes and tumor suppressor genes activates mechanistic target of rapamycin (mTOR) and causes cancer. However, the downstream effectors of mTOR remain largely elusive. Here we report that brain-expressed X-linked 2 (BEX2) is a novel downstream effector of mTOR. Elevated BEX2 in Tsc2−/− mouse embryonic fibroblasts, Pten−/− mouse embryonic fibroblasts, Tsc2-deficient rat uterine leiomyoma cells, and brains of neuronal specific Tsc1 knock-out mice were abolished by mTOR inhibitor rapamycin. Furthermore, BEX2 was also increased in the liver of a hepatic specific Pten knock-out mouse and the kidneys of Tsc2 heterozygous deletion mice, and a patient with tuberous sclerosis complex (TSC). mTOR up-regulation of BEX2 was mediated in parallel by both STAT3 and NF-κB. BEX2 was involved in mTOR up-regulation of VEGF production and angiogenesis. Depletion of BEX2 blunted the tumorigenesis of cells with activated mTOR. Therefore, enhanced STAT3/NF-κB-BEX2-VEGF signaling pathway contributes to hyperactive mTOR-induced tumorigenesis. BEX2 may be targeted for the treatment of the cancers with aberrantly activated mTOR signaling pathway.  相似文献   

10.
Tuberous sclerosis complex 1 (Tsc1) is a tumor suppressor negatively regulating mammalian target of rapamycin complex 1 (mTORC1). It is reported that mice lacking Tsc1 gene in oocytes show depletion of primordial follicles, resulting in premature ovarian failure and subsequent infertility. A recent study indicated that deletion of Tsc1 in somatic cells of the reproductive tract caused infertility of female mice. However, it is not known whether specific disruption of Tsc1 in granulosa cells influences the reproductive activity of female mice. To clarify this problem, we mated Tsc1flox/flox mice with transgenic mice strain expressing cyp19-cre which exclusively expresses in granulosa cells of the ovary. Our results demonstrated that Tsc1flox/flox; cyp19-cre mutant mice were fertile, ovulating more oocytes and giving birth to more pups than control Tsc1flox/flox mice. Progressive accumulation of corpora lutea occurred in the Tsc1flox/flox; cyp19-cre mutant mice with advanced age. These phenotypes could be explained by the elevated activity of mTORC1, as indicated by increased phosphorylation of rpS6, a substrate of S6 in the Tsc1flox/flox; cyp19-cre mutant granulosa cells. In addition, rapamycin, a specific mTORC1 inhibitor, effectively rescued the phenotype caused by increased mTORC1 activity in the Tsc1cko ovaries. Our data suggest that conditional knockout of Tsc1 in granulosa cells promotes reproductive activity in mice.  相似文献   

11.
12.
Madan M  Amar S 《PloS one》2008,3(9):e3204

Background

Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE+/− mice.

Methods and Results

To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE+/−-TLR2+/+, ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 µl live Porphyromonas gingivalis (P.g) (107 CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE+/−-TLR2+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE+/−-TLR2+/+ mice were significantly higher than from ApoE+/−-TLR2+/− and ApoE+/−-TLR2−/− mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE+/−-TLR2+/+ mice compared to ApoE+/−-TLR2+/− and TLR2−/− mice, irrespective of diet or bacterial challenge. ApoE+/−-TLR2+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE+/−-TLR2−/− mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimentional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE+/−-TLR2+/+ mice fed the high fat diet and inoculated with P.g compared to any other group.

Conclusion

Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE+/− mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.  相似文献   

13.
Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc−/−) with short telomeres compared to wild type mice (mTerc+/+) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc−/− mice compared to mTerc+/+ mice. Seven days after chemical induced damage, G3 mTerc−/− mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc+/+ mice (p = 0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.  相似文献   

14.
Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.  相似文献   

15.
The aim of the present study was to investigate TLR2 expression in peripheral blood monocytes from dogs naturally infected with Leishmania (Leishmania) infantum to determine whether it correlates with CD11b/CD18 (CR3) expression, and to evaluate the potential of dogs as sources of infection using phlebotomine xenodiagnosis. Forty eight dogs were serologically diagnosed with L. infantum infection by indirect immunofluorescence antibody test (IFAT) and enzyme linked immunosorbent assay (ELISA). Parasitological exams from bone-marrow aspirates were positive by PCR analysis. All dogs were clinical defined as symptomatic. Ear skin tissue samples were obtained for immunohistochemistry (IHQ) analysis. The potential of these dogs as a source of infection using phlebotomine xenodiagnosis (XENO) was evaluated. Flow cytometry was carried out on peripheral blood mononuclear cells using superficial receptors including CD14, CD11b, TLR2 and MHCII. IHQ ear skin tissue parasite load and XENO where done where we found a strict correlation (r = 0.5373). Dogs with higher expression of MFI of CD11b inside CD14 monocytes were represented by dogs without parasite ear tissue load that were unable to infect phlebotomines (IHQ/XENO). Dogs with lower expression of MFI of CD11b inside CD14 monocytes were represented by dogs with parasite ear tissue load and able to infect phlebotomines (IHQ+/XENO+) (p = 0,0032). Comparable results were obtained for MFI of MHCII (p = 0.0054). In addition, considering the population frequency of CD11b+TLR2+ and CD11b+MHCII+, higher values were obtained from dogs with IHQ/XENO than dogs with IHQ+/XENO+ (p = 0.01; p = 0.0048, respectively). These data, together with the TLR2 and NO assays results (CD11b+TLR2+ and NO with higher values for dogs with IHQ/XENO than dogs with IHQ+/XENO+), led to the conclusion that IHQ/XENO dogs are more resistant or could modulate the cellular immune response essential for Leishmania tissue clearance.  相似文献   

16.
17.
Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04–1×10−17). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07–0.17, P = 5×10−5–1×10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE±0.22 mg/dl/allele, P = 8×10−5, P interaction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE±0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE±0.22 mg/dl/allele, P = 0.90; P interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE±0.012 ln nmol/L/allele, P = 0.01, P interaction = 0.01) but not in the placebo (β = −0.002, SEE±0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE±0.008 nmol/L/allele, P = 0.12; P interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.  相似文献   

18.
Tuberous sclerosis complex (TSC) is a genetic disease characterized by multiorgan benign tumors as well as neurological manifestations. Epilepsy and autism are two of the more prevalent neurological complications and are usually severe. TSC is caused by mutations in either the TSC1 (encodes hamartin) or the TSC2 (encodes tuberin) genes with TSC2 mutations being associated with worse outcomes. Tuberin contains a highly conserved GTPase‐activating protein (GAP) domain that indirectly inhibits mammalian target of rapamycin complex 1 (mTORC1). mTORC1 dysregulation is currently thought to cause much of the pathogenesis in TSC but mTORC1‐independent mechanisms may also contribute. We generated a novel conditional allele of Tsc2 by flanking exons 36 and 37 with loxP sites. Mice homozygous for this knock‐in Tsc2 allele are viable and fertile with normal appearing growth and development. Exposure to Cre recombinase then creates an in‐frame deletion involving critical residues of the GAP domain. Homozygous conditional mutant mice generated using Emx1Cre have increased cortical mTORC1 signaling, severe developmental brain anomalies, seizures, and die within 3 weeks. We found that the normal levels of the mutant Tsc2 mRNA, though GAP‐deficient tuberin protein, appear unstable and rapidly degraded. This novel animal model will allow further study of tuberin function including the requirement of the GAP domain for protein stability. genesis 51:284–292. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Intraepithelial lymphocytes (IELs) bearing the γδ T-cell receptor are a unique intestinal subset whose function remains elusive. Here, we examine how they behave in AIDS and during various regimens of antiretroviral treatment in order to obtain mechanistic insight into their adaptive or innate functional in vivo properties. IELs were studied by multimarker two-colour immunofluorescence in situ staining. Consecutive duodenal biopsies were obtained from advanced infection-prone HIV+ patients (n = 30). The systemic adaptive immune status was monitored by determining T-cell subsets and immunoglobulins in peripheral blood. The γδ IEL ratio (median 14.5%, range 1.5–56.3%) was significantly increased (p<0.02) compared with that in clinically healthy HIV control subjects (n = 11, median 2.8%; range 0.3–38%), although the number of γδ IELs per mucosal length unit (U) only tended to be increased (4.0/U in HIV+ versus 3.2/U in HIVsubjects). Notably, the total number of CD3+ IELs was significantly reduced in AIDS (p<0.0001, 39.6/U in HIV+ versus 86.4/U in HIV subjects). Almost 100% of the γδ IELs were CD8 and they often expressed the Vδ1/Jδ1-encoded epitope (median 65.2%). HIV+ patients on highly active antiretroviral therapy only tended to have a lower ratio of γδ IELs (median 12.8%) than those receiving no treatment (median 14.3%) or 1 nucleoside analogue (NA) (median 23.5%) or 2 NAs (median 13.0%). This minimal variation among therapy groups, contrasting the treatment response of systemic and local adaptive immunity, harmonizes with the novel idea derived from animal experiments that γδ T cells are largely innate cells in first-line microbial defence.  相似文献   

20.
Hyperactive mammalian target of rapamycin (mTOR) is associated with cognitive deficits in several neurological disorders including tuberous sclerosis complex (TSC). The phosphorylation of the mRNA-binding protein FMRP reportedly depends on mTOR complex 1 (mTORC1) activity via p70 S6 kinase 1 (S6K1). Because this phosphorylation is thought to regulate the translation of messages important for synaptic plasticity, we explored whether FMRP phosphorylation of the S6K1-dependent residue (S499) is altered in TSC and states of dysregulated TSC-mTORC1 signaling. Surprisingly, we found that FMRP S499 phosphorylation was unchanged in heterozygous and conditional Tsc1 knockout mice despite significantly elevated mTORC1-S6K1 activity. Neither up- nor down-regulation of the mTORC1-S6K1 axis in vivo or in vitro had any effect on phospho-FMRP S499 levels. In addition, FMRP S499 phosphorylation was unaltered in S6K1-knockout mice. Collectively, these data strongly suggest that FMRP S499 phosphorylation is independent of mTORC1-S6K1 activity and is not altered in TSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号