首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a non-extractive marine reserve on the recruitment dynamics of haemulid fishes and their predators on Barbados coral reefs were studied using visual census and mark-recapture methods. Size and abundance of piscivores (including large adult grunts) known to prey on grunts were greater within the reserve than on adjacent reefs, whereas size and abundance of older juvenile grunts did not differ between protected and exploited reefs. Recruitment and early juvenile abundance were lower within the reserve and were inversely related to predator density (including adult conspecifics). Patterns in density of new recruits may also have been influenced by oceanographic patterns of supply of larvae. Thus, although protection has a significant positive effect on the size and abundance of large carnivorous fishes, higher predation pressure within a reserve may serve to reduce juvenile recruitment within the reserve. At some size/age, cumulative recruitment due to lower size-specific predation mortality results in higher density within the reserve. This increased density is maintained by the absence of fishing mortality within the reserve. Despite maintaining high spawning biomass of several large, commercially exploited species that may export larvae to downstream areas, the Barbados Marine Reserve appears to be a local sink for juvenile grunts.  相似文献   

2.
Meta-analyses of published data for 19 marine reserves reveal that marine protected areas enhance species richness consistently, but their effect on fish abundance is more variable. Overall, there was a slight (11%) but significant increase in fish species number inside marine reserves, with all reserves sharing a common effect. There was a substantial but non-significant increase in overall fish abundance inside marine reserves compared to adjacent, non-reserve areas. When only species that are the target of fisheries were considered, fish abundance was significantly higher (by 28%) within reserve boundaries. Marine reserves vary significantly in the extent and direction of their response. This variability in relative abundance was not attributable to differences in survey methodology among studies, nor correlated with reserve characteristics such as reserve area, years since protection, latitude nor species diversity. The effectiveness of marine reserves in enhancing fish abundance may be largely related to the intensity of exploitation outside reserve boundaries and to the composition of the fish community within boundaries. It is recommended that studies of marine reserve effectiveness should routinely report fishing intensity, effectiveness of enforcement and habitat characteristics.  相似文献   

3.
Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest.  相似文献   

4.
Protection from fishing generally results in an increase in the abundance and biomass of species targeted by fisheries within marine reserve boundaries. Natural refuges such as depth may also protect such species, yet few studies in the Indo Pacific have investigated the effects of depth concomitant with marine reserves. We studied the effects of artisanal fishing and depth on reef fish assemblages in the Kubulau District of Vanua Levu Island, Fiji, using baited remote underwater stereo-video systems. Video samples were collected from shallow (5–8 m) and deep (25–30 m) sites inside and outside of a large old marine reserve (60.6 km2, 13 years old) and a small new marine reserve (4.25 km2, 4 years old). Species richness tended to be greater in the shallow waters of the large old reserve when compared to fished areas. In the deeper waters, species richness appeared to be comparable. The difference in shallow waters was driven by species targeted by fisheries, indicative of a depth refuge effect. In contrast, differences in the abundance composition of the fish assemblage existed between protected and fished areas for deep sites, but not shallow. Fish species targeted by local fisheries were 89% more abundant inside the large old reserve than surrounding fished areas, while non-targeted species were comparable. We observed no difference in the species richness or abundance of species targeted by fisheries inside and outside of the small new reserve. This study suggests that artisanal fishing impacts on the abundance and species richness of coral reef fish assemblages and effects of protection are more apparent with large reserves that have been established for a long period of time. Observed effects of protection also vary with depth, highlighting the importance of explicitly incorporating multiple depth strata in studies of marine reserves.  相似文献   

5.
The supply of larvae to the shore is important for population replenishment and intertidal community dynamics but its variability at most scales is not well understood. We tested the relationship between nearshore mussel larval abundance and intertidal settlement rates over several years at multiple spatiotemporal scales in Oregon and New Zealand. Abundance of competent larvae nearshore and intertidal recruitment rates were simultaneously quantified using collectors mounted at different depths on moorings 50-1100 m from shore, and at adjacent rocky intertidal sites. Total mussel larval abundance and oceanographic conditions were also measured in some locations. At all scales, abundance of nearshore mussel larvae was unrelated to intertidal recruitment rates. In the intertidal, patterns of mussel recruitment were persistent in space, with sites of consistently high or low recruitment. In contrast, nearshore competent larval abundance showed generally similar abundances among sites except for a high, and spatially-inconsistent, variability in Oregon during 1998 only. On moorings, recruitment tended to be greater on midwater collectors than shallower or deeper. Finally, on moorings larval abundance in traps and recruitment on collectors was unrelated. These results suggest that (1) among sites, the size of the nearshore larval pool is relatively uniform while onshore recruitment varies and is unrelated to larval abundance, (2) temporal variability in nearshore larval availability is not strongly expressed onshore, (3) vertical stratification of competent larvae nearshore is strong and may influence transport and recruitment, and (4) within-coast variability in onshore recruitment is strongly driven by processes occurring locally within the surf zone that need to be studied to understand coastal recruitment dynamics.  相似文献   

6.
Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km(2) study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders.  相似文献   

7.
The amount of energy available to larvae during swimming, location of a suitable recruitment site, and metamorphosis influences the length of time they can spend in the plankton. Energetic parameters such as swimming speed, oxygen consumption during swimming and metamorphosis, and elemental carbon and nitrogen content were measured for larvae of four species of bryozoans, Bugula neritina, B. simplex, B. stolonifera, and B. turrita. The larvae of these species are aplanktotrophic with a short free-swimming phase ranging from less than one hour to a maximum of about 36 hours. There is about a fivefold difference in larval volume among the four species, which scales linearly with elemental carbon content and, presumably, with the amount of endogenous reserves available for swimming and metamorphosis. Mean larval swimming speeds (in centimeters per second) were similar among species. Specific metabolic rate and larval size were inversely related. For larvae of a given species, respiration rates remained similar for swimming and metamorphosis; however, because metamorphosis lasts about twice as long as a maximal larval swimming phase, it was more energetically demanding. Larger larvae expended more energy to complete metamorphosis than did smaller larvae, but in terms of the percentage of larval energy reserves consumed, swimming and metamorphosis were more "expensive" for smaller larvae. A comparison of the energy expended during larval swimming calculated on the basis of oxygen consumption and on the basis of elemental carbon decrease suggests that larvae of Bugula spp. may not use significant amounts of dissolved organic material (DOM) to supplement their endogenous energy reserves.  相似文献   

8.
Well‐designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self‐recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.  相似文献   

9.
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well‐connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean‐warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph‐theoretical approach based on centrality (eigenvector and distance‐weighted fragmentation) of habitat patches can help design better‐connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation‐only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.  相似文献   

10.
Grüss A  Kaplan DM  Hart DR 《PloS one》2011,6(5):e19960
Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas ('fishery squeeze') and fishing along reserve borders ('fishing-the-line') considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of 'total movement' (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone.  相似文献   

11.
Marine reserves hold promise for maintaining biodiversity and sustainable fishery management, but studies supporting them have not addressed a crucial aspect of sustainability: the reduction in viability of populations with planktonic larvae dispersing along a coastal habitat with noncontiguous marine reserves. We show how sustainability depends on the fraction of natural larval settlement (FNLS) remaining after reserves are implemented, which in turn depends on reserve configuration and larval dispersal distance. Sustainability requires FNLS to be greater than an empir-ically determined minimum. Maintaining an adequate value for all species requires either a large, unlikely fraction (> 35%) of coastline in reserves, or reserves that are larger than the mean larval dispersal distance of the target species. FNLS is greater for species dispersing shorter distances, which implies reserves can lead to: (1) changes in community composition and (2) genetic selection for shorter dispersal distance. Dependence of sustainability on dispersal distance is a new source of uncertainty.  相似文献   

12.
The value of no-take marine reserves as fisheries-management tools is controversial, particularly in high-poverty areas where human populations depend heavily on fish as a source of protein. Spillover, the net export of adult fish, is one mechanism by which no-take marine reserves may have a positive influence on adjacent fisheries. Spillover can contribute to poverty alleviation, although its effect is modulated by the number of fishermen and fishing intensity. In this study, we quantify the effects of a community-managed marine reserve in a high poverty area of Northern Mozambique. For this purpose, underwater visual censuses of reef fish were undertaken at three different times: 3 years before (2003), at the time of establishment (2006) and 6 years after the marine reserve establishment (2012). The survey locations were chosen inside, outside and on the border of the marine reserve. Benthic cover composition was quantified at the same sites in 2006 and 2012. After the reserve establishment, fish sizes were also estimated. Regression tree models show that the distance from the border and the time after reserve establishment were the variables with the strongest effect on fish abundance. The extent and direction of the spillover depends on trophic group and fish size. Poisson Generalized Linear Models show that, prior to the reserve establishment, the survey sites did not differ but, after 6 years, the abundance of all fish inside the reserve has increased and caused spillover of herbivorous fish. Spillover was detected 1km beyond the limit of the reserve for small herbivorous fishes. Six years after the establishment of a community-managed reserve, the fish assemblages have changed dramatically inside the reserve, and spillover is benefitting fish assemblages outside the reserve.  相似文献   

13.
Summary

Emigration and immigration of decapod larvae from estuaries depend on timing of larvae occurrence in the water column relative to the tidal, tidal amplitude and day cycles. The phase relation of these natural cycles varies with tidal regime and geographically, resulting in different time-patterns of hatching of first stage larvae and of presence of late stage larvae in the water column. Vertical migration behaviour according to phase of tide also controls transport inside estuaries. These mechanisms were investigated in a field study conducted on the northwest coast of Portugal where neap ebb tides occur during the night around the quarters of the moon. Flux of decapod larvae through one sampling station was measured during one lunar month at the Canal de Mira (Ria de Aveiro) in the spring of 1990. The sampling programme was comprised of a set of 25-h fixed station studies, separated by 25-h intervals during which no sampling took place. Plankton samples were collected with a pump every hour at three depths. Current velocity and direction at the standard depths, as well as height of the water column, were also measured every hour. Hourly instantaneous flux of larvae through a 1-m-wide vertical section of the Canal de Mira was calculated for the most abundant forms. A total number of 13 combinations of species and larval stages were analyzed, belonging to the families Atelecyclidae, Pirimelidae, Portunidae, Pilumnidae, Grapsidae, Palaemonidae, Crangonidae and Thalassinidae. Patterns of net larval flux along the lunar month could be grouped into three types. Type 1 includes first zoeas that were consistently exported to the sea. Type 2 comprises late zoeas, megalops and juveniles that were consistently imported into the estuary. First zoeas that were imported during some of the 25-h studies but were exported during the others were included in Type 3; in species of this type import periods appeared to alternate with export periods according to lunar phase. Flux of Type 1 larvae followed a semi-lunar pattern. Release activity of Type 1 zoeas took place during the night and started during neap tides around the quarters of the moon, but maximum releases occurred 3–4 h after high tide of average amplitude tides, 3–4 days after the quadratures. These observations agree with the hypothesis that hatching is timed to occur on ebb tides of the largest possible amplitude so that larvae are easily dispersed from areas with a high density of predator fishes. However, based on other observations on the Portuguese coast, it cannot be ruled out that hatching might depend on a minimum number of hours of darkness experienced by the females. Larvae included in Type 2 comprise forms that may have been retained inside the estuary for the entire larval phase, as well as one form that was imported from shelf waters. No semi-lunar pattern of import was detected in this last form. Fluctuations of net flux observed in Type 3 larvae, as well in other forms that were not included in any of the types, were more difficult to explain. These larvae were first zoeas of species belonging to different taxonomic, morphological and ecological groups and may show a diversity of adaptations to the way of life of the adults. Imports and exports of larvae depended not only on time-patterns of abundance, but also on time-patterns of larval vertical distribution. As a general rule, larval stages showed patterns of depth distribution that were consistent with vertical migration rhythmic behaviours synchronized with the tidal cycle. Though the effect was not always statistically significant, first-stage larvae were closer to the surface during ebb, especially during the night, enhancing seaward transport. On the contrary, later zoeal stages, megalops and juveniles were usually closer to the surface during flood, suggesting migration to the water column during this phase of the tide and landward transport.  相似文献   

14.
Crow White  Bruce E. Kendall 《Oikos》2007,116(12):2039-2043
Lively debate continues over whether marine reserves can lead to increased fishery yields when compared to conventional, quota‐based management, apparently driven by differences in the complexity and biological richness of the models being used. In an influential article, Hastings and Botsford used an analytically tractable, spatially implicit, non‐age‐structured model to assert that reserves are typically incapable of increasing yields relative to conventional management, regardless of the type (pre‐ or post‐dispersal, involving adults and/or larvae) or functional form (Ricker or Beverton‐Holt) of density dependence present. A recent numerical (simulation) model by Gaylord et al. concludes that reserves can enhance yield compared to conventional management, a result the authors attribute to their spatially‐explicit evaluation of stage‐structured adult growth, survivability and fecundity; and intercohort (adult‐on‐larvae) post‐dispersal density dependent population dynamics. Here we demonstrate that the increased model complexity is not responsible for the different conclusions. We analyze a spatially‐implicit model without stage structure that incorporates intercohort post‐dispersal density dependence. In this simple model we still find annual extirpation of adult populations outside reserves due to fishing to enhance larval recruitment there, allowing for increased yields compared to those achieved when harvest is evenly spread across the entire domain under conventional management. Consideration of neither spatially‐explicit dispersal dynamics nor stage‐structure in adult demographics is required for reserves to substantially improve yield beyond that attainable under conventional management. In contrast, consideration of within cohort post‐dispersal density dependence among larva during settlement in an otherwise identical model generates equivalence in yield between the two management strategies. These results recast a common message characterizing the relative benefit of reserve versus non‐reserve management from “equivalence at best” to “potentially improved”.  相似文献   

15.
No-take marine reserves can be powerful management tools, but only if they are well designed and effectively managed. We review how ecological guidelines for improving marine reserve design can be adapted based on an area’s unique evolutionary, oceanic, and ecological characteristics in the Gulf of California, Mexico. We provide ecological guidelines to maximize benefits for fisheries management, biodiversity conservation and climate change adaptation. These guidelines include: representing 30% of each major habitat (and multiple examples of each) in marine reserves within each of three biogeographic subregions; protecting critical areas in the life cycle of focal species (spawning and nursery areas) and sites with unique biodiversity; and establishing reserves in areas where local threats can be managed effectively. Given that strong, asymmetric oceanic currents reverse direction twice a year, to maximize connectivity on an ecological time scale, reserves should be spaced less than 50–200 km apart depending on the planktonic larval duration of target species; and reserves should be located upstream of fishing sites, taking the reproductive timing of focal species in consideration. Reserves should be established for the long term, preferably permanently, since full recovery of all fisheries species is likely to take?>?25 years. Reserve size should be based on movement patterns of focal species, although marine reserves?>?10 km long are likely to protect?~?80% of fish species. Since climate change will affect species’ geographic range, larval duration, growth, reproduction, abundance, and distribution of key recruitment habitats, these guidelines may require further modifications to maintain ecosystem function in the future.  相似文献   

16.
Developing networks of no-take marine reserves is often hindered by uncertainty in the extent to which local marine populations are connected to one another through larval dispersal and recruitment (connectivity). While patterns of connectivity can be predicted by larval dispersal models and validated by empirical methods, biogeographic approaches have rarely been used to investigate connectivity at spatial scales relevant to reserve networks (10's–100's of km). Here, species assemblage patterns in coral reef fish were used together with an individual-based model of dispersal of reef fish larvae to infer patterns of connectivity in a ∼300 km wide region in the Philippines that included the Bohol Sea and adjacent bodies of water. A dominant current flows through the study region, which may facilitate connectivity among >100 no-take reserves. Connectivity was first investigated by analysing data on the presence/absence of 216 species of reef fish and habitat variables across 61 sites. Hierarchical clustering of sites reflecting species assemblage patterns distinguished a major group of sites in the Bohol Sea (Bray–Curtis similarity >70%) from sites situated in adjacent bodies of water (bays, channels between islands and a local sea). The grouping of sites could be partly explained by a combination of degree of embayment, % cover of sand and % cover of rubble (Spearman rank correlation, ρw = 0.42). The individual-based model simulated dispersal of reef fish larvae monthly for three consecutive years in the region. The results of simulations, using a range of pelagic larval durations (15–45 days), were consistent with the species assemblage patterns. Sites in the model that showed strongest potential connectivity corresponded to the majority of sites that comprised the Bohol Sea group suggested by hierarchical clustering. Most sites in the model that exhibited weak connectivity were groups of sites which had fish assemblages that were least similar to those in the Bohol Sea group. Concurrent findings from the two approaches suggest a strong influence of local oceanography and geography on broad spatial patterns of connectivity. The predictions can be used as an initial basis to organise existing reserves to form ecologically meaningful networks. This study showed that species assemblage patterns could be a viable supplementary indicator of connectivity if used together with predictions from a larval dispersal model and if the potential effect of habitat on the structuring of species assemblages is taken into consideration.  相似文献   

17.
Larval attachment and metamorphosis, commonly referred to as larval settlement, of marine sessile invertebrates can be triggered or blocked by chemical cues and affected by changes in overall protein expression pattern and phosphorylation dynamics. This study focuses on the effects of butenolide, an effective larval settlement inhibitor, on larval settlement at the proteome level in the bryozoan Bugula neritina. Liquid‐phase IEF sample prefractionation combined with 2‐DE and MALDI‐TOF MS was used to identify the differentially expressed proteins. Substantial changes occurred both in protein abundance and in phosphorylation status during larval settlement and when settling larvae were challenged with butenolide. The proteins that responded to treatment were identified as structural proteins, molecular chaperones, mitochondrial peptidases and calcium‐binding proteins. Compared with our earlier results, both genistein and butenolide inhibited larval settlement of B. neritina primarily by changes in protein abundance and the phosphorylation status of proteins but have different protein targets in the same species. Clearly, to design potent antifouling compounds and to understand the mode of action of compounds, more studies on the effects of different compounds on proteome and phosphoproteome of different larval species are required.  相似文献   

18.
Networks of no-take reserves are important for protecting coral reef biodiversity from climate change and other human impacts. Ensuring that reserve populations are connected to each other and non-reserve populations by larval dispersal allows for recovery from disturbance and is a key aspect of resilience. In general, connectivity between reserves should increase as the distance between them decreases. However, enhancing connectivity may often tradeoff against a network’s ability to representatively sample the system’s natural variability. This “representation” objective is typically measured in terms of species richness or diversity of habitats, but has other important elements (e.g., minimizing the risk that multiple reserves will be impacted by catastrophic events). Such representation objectives tend to be better achieved as reserves become more widely spaced. Thus, optimizing the location, size and spacing of reserves requires both an understanding of larval dispersal and explicit consideration of how well the network represents the broader system; indeed the lack of an integrated theory for optimizing tradeoffs between connectivity and representation objectives has inhibited the incorporation of connectivity into reserve selection algorithms. This article addresses these issues by (1) updating general recommendations for the location, size and spacing of reserves based on emerging data on larval dispersal in corals and reef fishes, and on considerations for maintaining genetic diversity; (2) using a spatial analysis of the Great Barrier Reef Marine Park to examine potential tradeoffs between connectivity and representation of biodiversity and (3) describing a framework for incorporating environmental fluctuations into the conceptualization of the tradeoff between connectivity and representation, and that expresses both in a common, demographically meaningful currency, thus making optimization possible.  相似文献   

19.
 This study examined the effect of fishing on the density, biomass, species richness and overall structure of the reef fish community at two islands (Sumilon and Apo) in the Philippines from 1983 to 1993. A series of natural fishing experiments over this period involving marine reserves were monitored at each island, where estimates of fishing intensity and selectivity were available. Fishing intensity (15% and 25% of biomass removed per year at Sumilon and Apo, respectively) was high enough to affect total community biomass, but not density, significantly. Species richness was not affected significantly by fishing, except at Sumilon reserve. The fishery was relatively non-selective with most families/trophic groups caught roughly in proportion to their contribution to community biomass. Thus fishing did not alter the relative abundance of the major families/trophic groups significantly, except during a period of use of explosives and drive nets in the Sumilon reserve. At the level of family/trophic group the community displayed strong resilience of structure. There was little evidence of secondary effects e.g. declines in abundance of large predators resulting in measurable increases in abundance of their prey. This resilience of the community to the effects of fishing most likely results from three important community attributes (open nature of the component populations, likely maintenance of upstream recruitment supply and apparent lack of any obvious “keystone” species or families) and one important characteristic of the fishery (relatively non-selective with respect to the components of the community). Accepted: 30 June 1998  相似文献   

20.
Coral reef fish larvae settle close to home   总被引:1,自引:0,他引:1  
Population connectivity through larval dispersal is an essential parameter in models of marine population dynamics and the optimal size and spacing of marine reserves. However, there are remarkably few direct estimates of larval dispersal for marine organisms, and the actual birth sites of successful recruits have never been located. Here, we solve the mystery of the natal origin of clownfish (Amphiprion polymnus) juveniles by mass-marking via tetracycline immersion all larvae produced in a population. In addition, we established parentage by DNA genotyping all potential adults and all new recruits arriving in the population. Although no individuals settled into the same anemone as their parents, many settled remarkably close to home. Even though this species has a 9-12 day larval duration, one-third of settled juveniles had returned to a 2 hectare natal area, with many settling <100 m from their birth site. This represents the smallest scale of dispersal known for any marine fish species with a pelagic larval phase. The degree of local retention indicates that marine reserves can provide recruitment benefits not only beyond but also within their boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号