首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substance P is a peptide implicated in the control of a variety of physiological processes. Although substance P-containing neurons impinge on the pulmonary vasculature, the effects of substance P on the pulmonary circulation have not been systematically investigated. Rabbits were anesthetized with methohexital sodium and paralyzed with pancuronium bromide. Injection of substance P (0.002-0.10 microgram/kg) in the vena cava produced dose-dependent pulmonary vasoconstriction and systemic vasodilation. Pulmonary arterial pressure reached a peak within 15-20 s and declined toward base line over 10 min. Aortic pressure fell rapidly, reaching minimum at 5-10 s. At higher doses cardiac output fell transiently, resulting in a 65% fall in pulmonary vascular conductance. If repeat substance P dosages were administered 15 min apart, there was no tachyphylaxis. Pulmonary vasoconstriction was inhibited by the cyclooxygenase blocker meclofenamate (10 mg/kg) and the thromboxane synthase inhibitor Dazmegrel (UK-38,485) (2 mg/kg). In contrast, vasoconstriction was enhanced by atropine (2 mg/kg). In Dazmegrel-treated animals in whom pulmonary vasoconstriction was established by epinephrine infusion, low doses of substance P produced vasodilation. Our findings indicate that substance P produces pulmonary vasoconstriction via prostaglandin (particularly thromboxane) generation and pulmonary vasodilation via activation of cholinergic pathways.  相似文献   

2.
Endogenous endothelin (ET)-1 modulates hypoxic pulmonary vasoconstriction (HPV). Accordingly, intravenously applied ET(A) receptor antagonists reduce HPV, but this is accompanied by systemic vasodilation. We hypothesized that inhalation of an ET(A) receptor antagonist might act selectively on the pulmonary vasculature and investigated the effects of aerosolized LU-135252 in an experimental model of HPV. Sixteen piglets (weight: 25 +/- 1 kg) were anesthetized and mechanically ventilated at an inspiratory oxygen fraction (Fi(O(2))) of 0.3. After 1 h of hypoxia at Fi(O(2)) 0.15, animals were randomly assigned either to receive aerosolized LU-135252 as bolus (0.3 mg/kg for 20 min; n = 8, LU group), or to receive aerosolized saline (n = 8, controls). In all animals, hypoxia significantly increased mean pulmonary arterial pressure (32 +/- 1 vs. 23 +/- 1 mmHg; P < 0.01; means +/- SE) and increased arterial plasma ET-1 (0.52 +/- 0.04 vs. 0.37 +/- 0.05 fmol/ml; P < 0.01) compared with mild hyperoxia at Fi(O(2)) 0.3. Inhalation of LU-135252 induced a significant and sustained decrease in mean pulmonary arterial pressure compared with controls (LU group: 27 +/- 1 mmHg; controls: 32 +/- 1 mmHg; values at 4 h of hypoxia; P < 0.01). In parallel, mean systemic arterial pressure and cardiac output remained stable and were not significantly different from control values. Consequently, in our experimental model of HPV, the inhaled ET(A) receptor antagonist LU-135252 induced selective pulmonary vasodilation without adverse systemic hemodynamic effects.  相似文献   

3.
The effects of four F series prostaglandins on the pulmonary vascular bed were compared under conditions of controlled pulmonary blood flow in the intact spontaneously breathing dog. PGF1alpha and PGF2alpha increased lobar arterial pressure whereas PGF1beta and PGF2beta had little if any effect when infused into the lobar artery. The increase in lobar arterial pressure in response to PGF1alpha and PGF2alpha was associated with a significant increase in lobar venous pressure but no change in left atrial pressure. These data indicate that PGF1alpha and PGF2alpha increase pulmonary vascular resistance by constricting lobar veins and vessels upstream to small veins, presumed to be small arteries. It is concluded that in the pulmonary vascular bed the configuration of the hydroxyl group at carbon 9 is an important determinant of pressor activity.  相似文献   

4.
The cardiovascular effects of exogenously administered histamine were investigated in conscious newborn piglets aged 10-11 days during normoxia (21% (v/v) O2) and during isocapneic alveolar hypoxia (10% O2, 3% CO2, 87% N2) to determine its influence on preexisting vascular tone. In the first set of experiments (n = 6), four histamine doses (1,10,50,100 micrograms/kg) were tested in sequence during normoxia. Histamine was injected intravenously and cardiovascular variables were recorded. Heart rate increased at all doses studied. Pulmonary and systemic arterial pressures, cardiac output and stroke volume were unchanged at the low histamine doses (1 and 10 micrograms), but all decreased at the high doses (50 and 100 micrograms). Pulmonary and systemic vascular resistances were unchanged at each dose. In the second set of experiments (n = 7), two histamine doses (1 and 5 micrograms/kg) were administered during alveolar hypoxia. Hypoxia caused increases in heart rate and pulmonary arterial pressure and resistance. After injection of each dose of histamine, pulmonary pressure and resistance decreased but remained higher than baseline. No other measured cardiovascular variables were altered. Thus, during normoxia histamine did not alter vascular tone, but high doses did adversely affect myocardial function. During alveolar hypoxia histamine caused weak pulmonary vasodilation at doses that did not alter systemic vascular tone. Histamine is not a potent modifier of the circulation in the newborn piglet during conditions of normoxaemia or hypoxaemia.  相似文献   

5.
In this study we examined the action of arachidonic acid in the isolated rat lung perfused with a cell- and protein-free physiological salt solution. When pulmonary vascular tone was elevated by hypoxia, bolus injection of a large dose of arachidonic acid (75 micrograms) caused transient vasoconstriction followed by vasodilation. When arachidonic acid (100 micrograms) was injected during normoxia and at base-line perfusion pressure (low vascular tone) or when vascular tone was elevated by KCl, arachidonic acid (50 micrograms) caused only vasoconstriction. Doses less than 7.5 micrograms caused vasodilation only when injected during hypoxic vasoconstriction and subsequent blunting of either angiotensin II- or hypoxia-induced pulmonary vasoconstriction. The higher doses of arachidonic acid (7.5 and 75 micrograms), but not the lower doses (7.5-750 ng), caused increases in effluent 6-ketoprostaglandin F1 alpha, thromboxane B2, and prostaglandin E2 and F2 alpha. 6-Ketoprostaglandin F1 alpha was the major cyclooxygenase product. Meclofenamate (10(-5) M) blocked the increased metabolite synthesis over the entire dose range of arachidonic acid tested (7.5 ng-75 micrograms). Because vasodilation immediately after arachidonic acid was cyclooxygenase-independent, we investigated whether this effect was due to the unsaturated fatty acid properties of arachidonic acid and compared its action with that of oleic acid and docosahexaenoic acid. Because neither compound mimicked the vasodilation observed with arachidonic acid, we concluded that the cyclooxygenase-independent action of arachidonic acid could not be explained by unsaturated fatty acid properties per se. Because 1-aminobenzotriazole, a cytochrome P-450 inhibitor, partially inhibited the immediate arachidonic acid-induced pulmonary vasodilation, we concluded that cytochrome P-450-dependent metabolites can account for some of the cyclooxygenase-independent vasodilation of arachidonic acid.  相似文献   

6.
In the anesthetised dog an infusion of exogenous prostaglandin E1 (100muG/min) inhibits the pulmonary vascular pressor response to hypoxia. Both 25 and 100muG/min PGE1 can reduce the transient pulmonary hypertension caused by a bolus of prostaglandin F2alpha. This suggests that hypoxia and PGF2alpha may share a final common pathway in producing pulmonary vasoconstriction. These results may help to explain the mechanism by which endotoxin inhibits the pulmonary vascular response to hypoxia. This effect is probably achieved by stimulating the production of an endogenous dilator prostaglandin. Exogenous PGE1 can mimic this effect.  相似文献   

7.
Hypoxia alters vascular tone which regulates regional blood flow in the pulmonary circulation. Endothelial derived eicosanoids alter vascular tone and blood flow and have been implicated as modulators of hypoxic pulmonary vasoconstriction. Eicosanoid production was measured in cultured bovine pulmonary endothelial cells during constant flow and pressure perfusion at two oxygen tensions (hypoxia: 4% O2, 5% CO2, 91% N2; normoxia: 21% O2, 5% CO2, 74% N2). Endothelial cells were grown to confluence on microcarrier beads. Cell cartridges (N = 8) containing 2 ml of microcarrier beads (congruent to 5 x 10(6) cells) were constantly perfused (3 ml/min) with Krebs' solutions (pH 7.4, T 37 degrees C) equilibrated with each gas mixture. After a ten minute equilibration period, lipids were extracted (C18 Sep Pak) from twenty minute aliquots of perfusate over three hours (nine aliquots per cartridge). Eicosanoids (6-keto PGF1 alpha; TXB2; and total leukotriene [LT - LTC4, LTD4, LTE4, LTF4]) were assayed by radioimmunoassay. Eicosanoid production did not vary over time. 6-keto PGF1 alpha production was increased during hypoxia (normoxia 291 +/- 27 vs hypoxia 395 +/- 35 ng/min/gm protein; p less than 0.01). Thromboxane production (normoxia 19 +/- 2 vs hypoxia 20 +/- 2 ng/min/gm protein) and total leukotriene production (normoxia 363 +/- 35 vs hypoxia 329 +/- 29 ng/min/gm protein) did not change with hypoxia. These data demonstrated that oxygen increased endothelial prostacyclin production but did not effect thromboxane or leukotriene production.  相似文献   

8.
We studied the effect of prostaglandin F2 alpha (PGF2 alpha) on the responsiveness of pulmonary airways in dogs. Airway responsiveness was assessed by determining the bronchoconstrictor response to increasing concentrations of acetylcholine aerosol delivered to the airways. In each of five dogs, we determined responsiveness during treatment with physiologic saline, histamine, or PGF2 alpha aerosols. The doses of histamine and PGF2 alpha were determined by establishing the largest dose of each which could be given to the dog without causing bronchoconstriction (subthreshold doses). We found that airway responsiveness was not significantly different during histamine treatment than after saline, however, responsiveness increased during treatment with PGF2 alpha. In addition, the hyperresponsiveness induced by PGF2 alpha was prevented by pretreatment with the ganglion blocking drug hexamethonium (5 mg/kg given intravenously). The results show that PGF2 alpha specifically increases the responsiveness of pulmonary airways in doses that do not cause bronchoconstriction, and suggest that the hyperresponsiveness involves a neural mechanism such as increased responsiveness of airway sensory nerves.  相似文献   

9.
To assess the in vivo effects of the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP) on the pulmonary vascular bed, the hemodynamic responses to both CGRP and SP were examined in the in situ-perfused lung lobe of open-chest anesthetized pigs. Peptides were infused into the lobar artery under conditions of elevated pulmonary vascular tone by prostaglandin F2 alpha (PGF2 alpha, 20 micrograms/min). Pulmonary airway lobar dynamic compliance (Cdyn) and airway resistance (Re) were computed from simultaneously measured airway pressure and airflow entering the lobe through a Carlens endobronchial divider. PGF2 alpha infusion slightly reduced Cdyn (-20%) and increased Re (+11%) while lobar arterial pressure rose from 14 +/- 1 to 31 +/- 2 mmHg (n = 12). In these conditions, lobar artery infusion of SP (0.5-50 pmol/min) or CGRP (15-5,000 pmol/min) produced a dose-dependent decrease in the pressor response to PGF2 alpha, reaching -54 +/- 3 and -64 +/- 7%, respectively, without alterations in lung mechanics. On a molar basis, SP was more effective than CGRP; its vasodilatory effect was more rapid and of shorter duration. Higher CGRP infusion rates were not studied because of marked systemic hypotension. SP infused at 150, 500, and 1,000 pmol/min significantly reduced Cdyn by 12 +/- 2, 24 +/- 4, and 62 +/- 7%, respectively, but also induced a rise in lobar arterial pressure and a fall in systemic arterial pressure. The results show that both SP and CGRP are potent pulmonary vasodilators. In contrast to CGRP, which did not affect lung mechanics, high infusion rates of SP decreased Cdyn and increased Re.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Cyclic GMP-dependent protein kinase (PKG) plays an important role in regulating pulmonary vasomotor tone in the perinatal period. In this study, we tested the hypothesis that a change in oxygen tension affects PKG-mediated pulmonary vasodilation. Isolated intrapulmonary arteries and veins of near-term fetal lambs were first incubated for 4 h under hypoxic and normoxic conditions (Po2 of 30 and 140 mmHg, respectively) and then contracted with endothelin-1. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), a cell membrane-permeable analog of cGMP, induced a greater relaxation in vessels incubated in normoxia than in hypoxia. beta-Phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp isomer (Rp-8-Br-PET-cGMPS), a selective inhibitor of PKG, attenuated relaxation induced by 8-BrcGMP (10-4 and 3 x 10-4 M). In the presence of Rp-8-Br-PET-cGMPS, the differential responses to 8-BrcGMP between hypoxia and normoxia treatment were abolished in veins but not in arteries. cGMP-stimulated PKG activity was present in arteries but not in veins after 4 h of hypoxia. Both vessel types showed significant increase in cGMP-stimulated PKG activity after 4 h of normoxia. PKG protein (Western blot analysis) and PKG mRNA levels (quantitative RT-PCR) were greater in veins but not in arteries after 4-h exposure to normoxia vs. hypoxia. These results demonstrate that oxygen augments cGMP-mediated vasodilation of fetal pulmonary arteries and veins. Furthermore, the effect of oxygen on response of the veins to cGMP is due to an increase in the activity, protein level, and mRNA of PKG.  相似文献   

12.
Slow reacting substance (SRS) injected into the pulmonary artery released prostaglandins E (PGE) and F2alpha (PGF2alpha) and the 15-keto-13, 14-dihydro PG metabolites from non-sensitized and ovalbumin sensitized, isolated, perfused guinea pig lungs. PGs were also released from lungs incubated with SRS. Sensitized lungs released more PGs in both types of preparations. Indomethacin inhibited the effect of SRS. Passively sensitized human lung fragments, in parallel to guinea pig lung, released PGE, PGF2alpha and the metabolites when incubated with SRS or antigen. In in vivo experiments, SRS and arachidonic acid given intravenously increased the airway insufflation pressure in anesthetized quinea pigs. These effects, but not the action of injected PGF2alpha and histamine, were abolished by indomethacin. The results indicate that one of the modes of SRS action is by release of PGs, and are consistent with the hypothesis that PGs are predominantly "secondary" mediators (in the temporal sense) of the antigen-antibody reaction.  相似文献   

13.
We studied the effects of acute hypoxia (Fi02 = 0.09-0.11, 20 min.) on transpulmonary plasma prostaglandin (PG) concentrations in ten anesthetized, paralyzed, artificially ventilated dogs. Concentrations of 6-keto-PGF1 alpha, TxB2, PGE2, PGF2 alpha, and 13,14-dihydro-15-keto-PGF2 alpha were measured from the pulmonary artery and abdominal aorta using radioimmunoassay. In an additional six dogs, the effects of arachidonic acid (AA) infusions (100 mcg/kg/min) during normoxia and acute hypoxia were determined. Compared to normoxic conditions, acute hypoxia increased pulmonary artery pressure (p less than 0.05), decreased both the arterial oxygen tension (PaO2) and the alveolar-to-arterial oxygen tension gradient (A-aDO2) (p less than 0.05), but did not affect transpulmonary plasma PG concentrations. AA infusions significantly (p less than 0.05) increased 6-keto-PGF1 alpha independent of FiO2. Acute hypoxia failed to elicit a pulmonary pressor response in the AA-treated animals although PaO2 and A-aDO2 decreased (p less than 0.05). These data in healthy dogs suggest that (1) acute hypoxia does not alter net pulmonary PG metabolism, (2) prostacyclin synthesis is stimulated by increased plasma AA concentrations and (3) this effect may block normal pressor responses to hypoxic stimuli.  相似文献   

14.
The hypothesis on Fetal and Infant Origins of Adult Disease proposes that an altered in utero environment may impair fetal development and physiological function, increasing susceptibility to disease in adulthood. Previous studies demonstrated that reduced fetal growth predisposes to adult cardiovascular diseases. Maternal smoking and high altitude are also linked to reduced fetal growth and adult disease, and both cause fetal hypoxia. We therefore wanted to determine whether fetal hypoxia produces alterations in the adult pulmonary vasculature. Body and ventricular weight, pulmonary arterial compliance and vasoreactivity to potassium chloride (KCl), prostaglandin F2alpha (PGF2alpha), acetylcholine (ACh) and sodium nitroprusside (SNP) were studied in adult rats exposed to 10 % hypoxia throughout the perinatal period, compared to age-matched controls. Rats exposed to perinatal hypoxia had reduced body weight (199+/-15 vs. 294+/-10 g, P<0.001), elevated right ventricular weight (70.3+/-8.8 vs. 51.4+/-1.2 mg/100 g, P<0.05), elevated left ventricular weight (281+/-27 vs. 232+/-5 mg/100 g, P<0.05), reduced pulmonary arterial compliance (35.2+/-2.0 vs. 46.4+/-2.4 microm/mN, P<0.05) and reduced maximal pulmonary vasoconstriction to KCl (1.74+/-0.14 vs. 2.63+/-0.31 mN/mm, P<0.01), and PGF2(2alpha) (1.40+/-0.14 vs. 2.47+/-0.44 mN/mm, P<0.05). Perinatal exposure to hypoxia had a profound effect upon the adult pulmonary circulation, which could predispose to cardiopulmonary diseases in adulthood.  相似文献   

15.
Phosphodiesterase 1 (PDE1) modulates vascular tone and the development of tolerance to nitric oxide (NO)-releasing drugs in the systemic circulation. Any role of PDE1 in the pulmonary circulation remains largely uncertain. We measured the expression of genes encoding PDE1 isozymes in the pulmonary vasculature and examined whether or not selective inhibition of PDE1 by vinpocetine attenuates pulmonary hypertension and augments the pulmonary vasodilator response to inhaled NO in lambs. Using RT-PCR, we detected PDE1A, PDE1B, and PDE1C mRNAs in pulmonary arteries and veins isolated from healthy lambs. In 13 lambs, the thromboxane A(2) analog U-46619 was infused intravenously to increase mean pulmonary arterial pressure to 35 mmHg. Four animals received an intravenous infusion of vinpocetine at incremental doses of 0.3, 1, and 3 mg.kg(-1).h(-1). In nine lambs, inhaled NO was administered in a random order at 2, 5, 10, and 20 ppm before and after an intravenous infusion of 1 mg.kg(-1).h(-1) vinpocetine. Administration of vinpocetine did not alter pulmonary and systemic hemodynamics or transpulmonary cGMP or cAMP release. Inhaled NO selectively reduced mean pulmonary arterial pressure, pulmonary capillary pressure, and pulmonary vascular resistance index, while increasing transpulmonary cGMP release. The addition of vinpocetine enhanced pulmonary vasodilation and transpulmonary cGMP release induced by NO breathing without causing systemic vasodilation but did not prolong the duration of pulmonary vasodilation after NO inhalation was discontinued. Our findings demonstrate that selective inhibition of PDE1 augments the therapeutic efficacy of inhaled NO in an ovine model of acute chemically induced pulmonary hypertension.  相似文献   

16.
We investigated the effects of infusions of ATP-MgCl2 on the circulation in 11 spontaneously breathing newborn lambs during pulmonary hypertension induced either by the infusion of U-46619, a thromboxane A2 mimetic, or by hypoxia. During pulmonary hypertension induced by U-46619, ATP-MgCl2 (0.01-1.0 mg.kg-1.min-1) caused a significant dose-dependent decrease in pulmonary arterial pressure (12.4-40.7%, P less than 0.05), while systemic arterial pressure decreased only at the highest doses (P less than 0.05). Left atrial infusions of ATP-MgCl2 caused systemic hypotension without decreasing pulmonary arterial pressure. During hypoxia-induced pulmonary hypertension, ATP-MgCl2 caused a similar significant dose-dependent decrease in pulmonary arterial pressure (12.0-41.1%, P less than 0.05), while systemic arterial pressure decreased only at high doses (P less than 0.05). Regression analysis showed selectivity of the vasodilating effects of ATP-MgCl2 for the pulmonary circulation during pulmonary hypertension induced either by U-46619 or hypoxia. ATP-MgCl2 is a potent vasodilator with a rapid metabolism that allows for selective vasodilation of the vascular bed first encountered (pulmonary or systemic). We conclude that infusions of ATP-MgCl2 may be clinically useful in the treatment of children with pulmonary hypertension.  相似文献   

17.
The influence of endogenous and exogenous atrial natriuretic factor (ANF) on pulmonary hemodynamics was investigated in anesthetized pigs during both normoxia and hypoxia. Continuous hypoxic ventilation with 11% O2 was associated with a uniform but transient increase of plasma immunoreactive (ir) ANF that peaked at 15 min. Plasma irANF was inversely related to pulmonary arterial pressure (Ppa; r = -0.66, P less than 0.01) and pulmonary vascular resistance (PVR; r = -0.56, P less than 0.05) at 30 min of hypoxia in 14 animals; no such relationship was found during normoxia. ANF infusion after 60 min of hypoxia in seven pigs reduced the 156 +/- 20% increase in PVR to 124 +/- 18% (P less than 0.01) at 0.01 microgram.kg-1.min-1 and to 101 +/- 15% (P less than 0.001) at 0.05 microgram.kg-1.min-1. Cardiac output (CO) and systemic arterial pressure (Psa) remained unchanged, whereas mean Ppa decreased from 25.5 +/- 1.5 to 20.5 +/- 15 mmHg (P less than 0.001) and plasma irANF increased two- to nine-fold. ANF infused at 0.1 microgram.kg-1.min-1 (resulting in a 50-fold plasma irANF increase) decreased Psa (-14%) and reduced CO (-10%); systemic vascular resistance (SVR) was not changed, nor was a further decrease in PVR induced. No change in PVR or SVR occurred in normoxic animals at any ANF infusion rate. These results suggest that ANF may act as an endogenous pulmonary vasodilator that could modulate the pulmonary pressor response to hypoxia.  相似文献   

18.
The endothelium-dependent (acetylcholine, bradykinin, substance P) and the endothelium-independent (gliceryl trinirate, 3-morpholinsydnominine, sodium nitroprusside) vasodilators were studied in the Langendorff-perfused heart of the guinea pig. The involvement of prostanoids and EDRF in the endothelium-dependent responses were assessed by using indomethacin, an inhibitor of cyclooxygenase, and NG-nitro-L-Arginine, an inhibitor of NO synthase. The endothelium-independent agents were used as reference compounds. Both indomethacin and NG-nitro-L-Arginine elevated significantly baseline coronary perfusion pressure, indicating that prostanoids (most likely PGI2 and PGE2) and EDRF modulate the resting tone of the guinea pig coronary circulation. NG-nitro-L-Arginine, but not indomethacin, considerably reduced receptor-stimulated responses. It is concluded that acetylcholine, bradykinin or substance P-induced vasodilation is mediated by EDRF. In contrast, prostanoids do not contribute to endothelium-dependent responses. In addition, short-term tachyphylaxis to bolus injection of gliceryl trinitrate but not of sodium nitroprusside was demonstrated, suggesting that this preparation may be of value for studying nitrate tolerance.  相似文献   

19.
Obstructive sleep apnea (OSA) acutely increases systemic (Psa) and pulmonary (Ppa) arterial pressures and decreases ventricular stroke volume (SV). In this study, we used a canine model of OSA (n = 6) to examine the role of hypoxia and the autonomic nervous system (ANS) in mediating these cardiovascular responses. Hyperoxia (40% oxygen) completely blocked any increase in Ppa in response to obstructive apnea but only attenuated the increase in Psa. In contrast, after blockade of the ANS (20 mg/kg iv hexamethonium), obstructive apnea produced a decrease in Psa (-5.9 mmHg; P < 0.05) but no change in Ppa, and the fall in SV was abolished. Both the fall in Psa and the rise in Ppa that persisted after ANS blockade were abolished when apneas were induced during hyperoxia. We conclude that 1) hypoxia can account for all of the Ppa and the majority of the Psa response to obstructive apnea, 2) the ANS increases Psa but not Ppa in obstructive apnea, 3) the local effects of hypoxia associated with obstructive apnea cause vasodilation in the systemic vasculature and vasoconstriction in the pulmonary vasculature, and 4) a rise in Psa acts as an afterload to the heart and decreases SV over the course of the apnea.  相似文献   

20.
Nonadrenergic noncholinergic (NANC) mediated vasodilation may contribute to the maintenance of low pulmonary vascular tone. The NANC neurotransmitters, nitric oxide (NO) and the sensory neuropeptides, substance P and calcitonin gene related peptide (CGRP), were investigated as possible mediators of NANC vasodilation in guinea pig pulmonary arteries. Fresh guinea pig pulmonary artery rings, with and without an intact endothelium, were mounted in organ baths containing Krebs solution and precontracted with the prostaglandin F2alpha analogue U44069. In both endothelium-intact and denuded vessels, electrical field stimulation (1-12 Hz) in the presence of guanethidine and atropine resulted in a frequency-dependent vasodilation. The peptide fragment hCGRP8-37, a competitive antagonist of the CGRP receptors, the peptide fragment NK1 antagonist SP4-11, and the nonpeptide NK1 antagonist RP67580 had no effect on NANC vasodilation. In both endothelium-intact and denuded vessels, N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis, inhibited NANC vasodilation, an effect that was reversible with L-arginine. We conclude that NANC vasodilation in guinea pig pulmonary arteries is mediated predominantly through NO activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号