首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies revealed that oxidative stress could be an important component of the mechanism of organophosphate (OP) compound toxicity. The aim of the present study was to investigate both prophylactic and therapeutic effects of melatonin against fenthion-induced oxidative stress in rats. Therefore, we determined the changes in the levels of reduced glutathione (GSH) and malondialdehyde (MDA) in the whole blood, brain, pectoral muscle, liver, lung, heart, kidney, pancreas, and jejunum. Also, the changes in the levels of serum nitrite and nitrate, ascorbic acid, retinal, b-carotene, and ceruloplasmin were measured. In addition, activities of enzymatic antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in erythrocyte of normal and experimental animals were measured. It was found that fenthion administration increased the levels of MDA in all tissues and decreased or increased the levels of GSH in some tissues. In comparison to nitrate, nitrite and ascorbic acid levels in the serum of experimental groups, there was no significant difference between groups. However, fenthion toxicity led to decrease in retinol and β-carotene levels; melatonin administration significantly prevented this decrease. Serum ceruloplasmin level was increased due to fenthion administration, but prophylactic and therapeutic melatonin administration inhibited the increase in ceruloplasmin level of serum. There was no significant change in SOD levels in melatonin-administered groups. Melatonin modulates the fenthion-induced changes in the activities of GPx and CAT. In conclusion, the results of the current study revealed that OP toxicity, induced by fenthion, activated oxidant systems in all antioxidant systems in some tissues. Melatonin administration led to a marked increase in antioxidant activity and inhibited lipid peroxidation in most of tissues.  相似文献   

2.
The effect of the hormones triiodothyronine (T3) and melatonin on antioxidant defense system was studied in 6-propyl thiouracil (6-PTU)-treated or photoperiod-exposed teleost Anabas testudineus. 6-PTU (2 microg/g) treatment or photoperiod exposure (24 h) increased malondialdehyde (MDA) and conjugated dienes (CD) concentrations, indicating increased lipid peroxidation (LPO) in the experimental conditions. T3 or melatonin (10(-6) M) treatment for 15 min in vitro in PTU-treated fish reversed the activity of superoxide dismutase (SOD), catalase and glutathione content. T3-treated group showed no change in glutathione peroxidase (GPx) activity, whereas melatonin treatment decreased its activity. T3 inhibited glutathione reductase (GR) activity. Photoperiod exposure (physiological pinealotomy) induced a stressful situation in this teleost, as evidenced by LPO products and antioxidant enzyme activities. Melatonin and T3 treatment for 15 min in vitro also reversed the effect of photoperiod on peroxidation products and the SOD and catalase activities. GR activity decreased in photoperiod-exposed group and melatonin and T3 treatment reversed the activities. The antioxidant enzymes responded to the stress situation after 6-PTU treatment and photoperiod exposure by altering their activities. The study suggested an independent effect of T3 and melatonin on antioxidant defence mechanism in different physiological situations in fish.  相似文献   

3.
There are numerous reports on the effects of electromagnetic radiation (EMR) in various cellular systems. Melatonin and caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, were recently found to be potent free radical scavengers and antioxidants. Mechanisms of adverse effects of EMR indicate that reactive oxygen species may play a role in the biological effects of this radiation. The present study was carried out to compare the efficacy of the protective effects of melatonin and CAPE against retinal oxidative stress due to long-term exposure to 900 MHz EMR emitting mobile phones. Melatonin and CAPE were administered daily for 60 days to the rats prior to their EMR exposure during our study. Nitric oxide (NO, an oxidant product) levels and malondialdehyde (MDA, an index of lipid peroxidation), were used as markers of retinal oxidative stress in rats following to use of EMR. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in retinal tissue. Retinal levels of NO and MDA increased in EMR exposed rats while both melatonin and CAPE caused a significant reduction in the levels of NO and MDA. Likewise, retinal SOD, GSH-Px and CAT activities decreased in EMR exposed animals while melatonin and CAPE caused a significant increase in the activities of these antioxidant enzymes. Treatment of EMR exposed rats with melatonin or CAPE increased the activities of SOD, GSH-Px and CAT to higher levels than those of control rats. In conclusion, melatonin and CAPE reduce retinal oxidative stress after long-term exposure to 900 MHz emitting mobile phone. Nevertheless, there was no statistically significant difference between the efficacies of these two antioxidants against to EMR induced oxidative stress in rat retina. The difference was in only GSH-Px activity in rat retina. Melatonin stimulated the retinal GSH-Px activity more efficiently than CAPE did.  相似文献   

4.
In this study we assessed activities of antioxidant enzymes, lipid peroxidation end-products, and nitric oxide (NO) levels in women with postmenopausal osteoporosis (PMO). Relationship between oxidative stress parameters and NO levels with bone mineral density (BMD) and clinical variables influencing bone mass and health related quality of life measures was also investigated in women with PMO. Postmenopausal women (n = 87), aged 40–65, without previous diagnosis or treatment for osteoporosis and independent in daily living activities were included. BMD was measured at the lumbar spine and proximal femur using dual-X-ray absorptiometry (DXA). Erythrocyte catalase (CATe) enzyme activity, erythrocyte and plasma enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and lipid peroxidation end-product malondialdehyde (MDA) and nitrite/nitrate levels, by product of NO were studied. A total of 23 healthy non-porotic women were included as controls. Women with PMO had significantly lower erythrocyte CATe enzyme activity and higher erythrocyte malondialdehyde (MDAe) and erythrocyte nitric oxide (NOe) levels in comparison to controls whereas erythrocyte SODe and GSH-Px enzyme activity was similar. In plasma, osteporotic women had significantly higher SOD enzyme activity and higher MDA levels whereas similar GSH-Px enzyme activity and NO levels compared to non-porotic controls. Significant correlation was found between erythrocyte SODe, CATe enzyme activity and NOe levels with proximal femur BMD. Some of the quality of life scores as pain, mental, and social functions correlated with antioxidant enzyme activities and NO levels. Consequently, oxidative stress markers may be an important indicator for bone loss in postmenopausal women. Further researches assessing the oxidative stress markers and NO in bone tissue and changes with anti-osteoporotic drugs would be valuable to better understand the role of free radicals, antioxidants, and NO in the regulation of bone mass.  相似文献   

5.
The present study on carp Catla catla is the first attempt to search for a relationship between the concentrations of melatonin, oxidative status, and oocyte dynamics in the ovary of any fish. We measured the levels of melatonin, different antioxidative agents, and the marker of intracellular stress along with the profiles of different developmental stages of oocyte in the ovary of adult carp during four distinct phases in an annual reproductive cycle. Ovarian melatonin titers displayed significant seasonal variations with a peak during spawning and nadir during post-spawning, and thereby underlined its proximity to the course of ovarian development. A significant positive correlation was found between the ovarian levels of melatonin and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST), although each of them showed a negative correlation with the level of malondialdehyde (MDA)—a faithful indicator of intracellular stress. However, ovarian melatonin titers did not exhibit any correlation with the levels of reduced glutathione (GSH) and the activity of glutathione peroxidase (GPx). Collectively, our findings suggest that melatonin measured in carp ovary may be associated with an enhanced activity/level of selective antioxidative agents for reduction in oxidative stress to augment ovarian functions during the spawning.  相似文献   

6.
Hereditary fructose intolerance is an autosomal recessive disorder characterized by the accumulation of fructose in tissues and biological fluids of patients. The disease results from a deficiency of aldolase B, responsible for metabolizing fructose in the liver, kidney, and small intestine. We investigated the effect of acute fructose administration on oxidative stress and neuroinflammatory parameters in the cerebral cortex of 30-day-old Wistar rats. Animals received subcutaneous injection of sodium chloride (0.9 %) (control group) or fructose solution (5 μmol/g) (fructose group). One hour later, the animals were euthanized and the cerebral cortex was isolated. Oxidative stress (levels of thiobarbituric acid-reactive substances (TBA-RS), carbonyl content, nitrate and nitrite levels, 2′,7′-dihydrodichlorofluorescein (DCFH) oxidation, glutathione (GSH) levels, as well as the activities of catalase (CAT) and superoxide dismutase (SOD)) and neuroinflammatory parameters (TNF-α, IL-1β, and IL-6 levels and myeloperoxidase (MPO) activity) were investigated. Acute fructose administration increased levels of TBA-RS and carbonyl content, indicating lipid peroxidation and protein damage. Furthermore, SOD activity increased, whereas CAT activity was decreased. The levels of GSH, nitrate, and nitrite and DCFH oxidation were not altered by acute fructose administration. Finally, cytokines IL-1β, IL-6, and TNF-α levels, as well as MPO activity, were not altered. Our present data indicate that fructose provokes oxidative stress in the cerebral cortex, which induces oxidation of lipids and proteins and changes of CAT and SOD activities. It seems therefore reasonable to propose that antioxidants may serve as an adjuvant therapy to diets or to other pharmacological agents used for these patients, to avoid oxidative damage to the brain.  相似文献   

7.
Several indices of free radical generation were determined in limbic structures after kainate (KA)-induced seizure activity in adult and postnatal day (PND) 12 and 17 rats. Superoxide dismutase, catalase, and glutathione peroxidase activities were measured in piriform cortex and hippocampal subfields at 8, 16, 48 h, and 5 days after KA injection in adults and pups, and also at 3 weeks postinjection in adults. KA-induced seizure activity had no significant effect on enzyme activities in PND 12 and 17 rats. In adults, superoxide dismutase and catalase activities were significantly increased at 5 days after KA administration, and returned to preinjection levels by 3 weeks. Glutathione peroxidase activity was also increased significantly at 5 days postinjection, but remained elevated at 3 weeks. Lipid peroxidation, as indicated by malondialdehyde (MDA) concentration, exhibited an early significant increase at 8 and 16 h, followed at 48 h and 5 days by a significant decrease. At 3 weeks postinjection, MDA levels were still significantly decreased in CA3 and dentate gyrus. KA administration in PND 12 and 17 rats had no significant effect on MDA content. KA-induced seizure activity in adults also resulted in a large and sustained increase in protein oxidation in piriform cortex and hippocampus. The early increase in MDA and protein oxidation in adult rats strongly suggests the involvement of oxygen free radicals in the initial phases of KA-induced pathology, whereas the changes in scavenging enzyme activities and MDA content at 5 days and 3 weeks post KA injection possibly reflect glial proliferation subsequent to neuronal death.  相似文献   

8.
A complete explanation of the neurotoxicity that follows kainic acid (KA) injection into the rat striatum is lacking. An assessment of the chronological course after intrastriatal KA injection of the activities of enzymes preferentially concentrated in glia or involved in the detoxification of oxygen metabolites is accomplished. An enhancement of the specific activities of glutathione peroxidase (GP) and catalase is found without an alteration in the specific activity of superoxide dismutase (SOD). There is no increase in the in vivo striatal levels of malondialdehyde, a putative indicator of lipid peroxidation, the expected result of cell membrane damage from oxygen metabolites. Understanding the mechanism and importance of the preferential induction of the activities of the detoxification enzymes will require further study.  相似文献   

9.
Reactive oxygen species have been implicated in seizure-induced neurodegeneration, and there is a correlation between free radical level and scavenger enzymatic activity in the epilepsy. It has been suggested that pilocarpine-induced seizures is mediated by an increase in oxidative stress. Current research has found that antioxidant may provide, in a certain degree, neuroprotection against the neurotoxicity of seizures at the cellular level. Alpha-tocopherol has numerous nonenzymatic actions and is a powerful liposoluble antioxidant. The objective of the present study was to evaluate the neuroprotective effects of alpha-tocopherol (TP) in rats, against oxidative stress caused by pilocarpine-induced seizures. 30 min prior to behavioral observation, Wistar rats were treated with, 0.9% saline (i.p., control group), TP (200 mg/kg, i.p., TP group), pilocarpine (400 mg/kg, i.p., P400 group), or the combination of TP (200 mg/kg, i.p.) and pilocarpine (400 mg/kg, i.p.). After the treatments all groups were observed for 6 h. The enzymatic activities, lipid peroxidation and nitrite concentrations were measured using speccitrophotometric methods and these data were assayed. In P400 group mice there was a significant increase in lipid peroxidation and nitrite levels. However, no alteration was observed in superoxide dismutase (SOD) and catalase activities. In the TP and pilocarpine co-administered mice, antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content, as well as increased the SOD and catalase activities in rat hippocampus after seizures. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus during pilocarpine-induced seizures, indicate that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and imply that strong protective effect could be achieved using alpha-tocopherol.  相似文献   

10.
The present study aimed to test the effects of melatonin on oxidative stress in the yellowtail clownfish, Amphiprion clarkii, as produced by light emitting diodes (LEDs): red, green, and blue. We investigated the effects of the different LEDs on oxidative stress by measuring the mRNA expression of arylalkylamine N-acetyltransferase (AANAT2), the expression and activities of antioxidant enzymes (superoxide dismutase, SOD (EC 1.15.1.1); and catalase, CAT (EC 1.11.1.6)), and plasma H2O2 and plasma melatonin levels. In red light, the expression of AANAT2, SOD, and CAT mRNA was significantly higher than those under the other light spectra. SOD and CAT activities and plasma H2O2 and melatonin levels were also significantly higher for the red spectra than those for the other light spectra. These results indicate that red light induces oxidative stress. To investigate the effects of melatonin on oxidative stress, we injected melatonin into live fish (in vivo) or treated cultured pineal organ (in vitro) with melatonin. We found that AANAT2, SOD, and CAT mRNA expression levels, SOD and CAT activities, and plasma H2O2, lipid peroxidation (LPO) and melatonin levels were significantly lower than those for the controls. Therefore, our results indicate that red light induces oxidative stress and melatonin plays the role of a strong antioxidant in yellowtail clownfish.  相似文献   

11.
Agomelatine is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties. We analyzed whether agomelatine has antioxidant properties. Antioxidant activity of agomelatine (25, 50, or 75 mg/kg, i.p.) or melatonin (50 mg/kg) was investigated by measuring lipid peroxidation levels, nitrite content, and catalase activities in the prefrontal cortex, striatum, and hippocampus of Swiss mice pentylenetetrazole (PTZ) (85 mg/kg, i.p.), pilocarpine (400 mg/kg, i.p.), picrotoxin (PTX) (7 mg/kg, i.p.), or strychnine (75 mg/kg, i.p.) induced seizure models. In the pilocarpine-induced seizure model, all dosages of agomelatine or melatonin showed a significant decrease in TBARS levels and nitrite content in all brain areas when compared to controls. In the strychnine-induced seizure model, all dosages of agomelatine and melatonin decreased TBARS levels in all brain areas, and agomelatine at low doses (25 or 50 mg/kg) and melatonin decreased nitrite contents, but only agomelatine at 25 or 50 mg/kg showed a significant increase in catalase activity in three brain areas when compared to controls. Neither melatonin nor agomelatine at any dose have shown no antioxidant effects on parameters of oxidative stress produced by PTX- or PTZ-induced seizure models when compared to controls. Our results suggest that agomelatine has antioxidant activity as shown in strychnine- or pilocarpine-induced seizure models.  相似文献   

12.
Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat brain-cerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex. Murthy Ch.R.K—Deceased while in service.  相似文献   

13.
There is a link between diabetes and oxidative stress. Hyperglycaemia leads to free radical generation and alterations of endogenous antioxidants. Our aim is to study the effect of orally administered L-tryptophan (TRP), the melatonin precursor, an endogenous antioxidant, on circulating levels of glycaemia, insulin and melatonin, and on the superoxide dismutase and catalase antioxidant systems in non-diabetic (ND) and type 2 diabetic (n5-STZ) male Wistar rats. At 19:30 every day for 15 days, TRP (125 mg/kg body weight) was administered orally. At 09:00 every two days the glycaemia was measured and every day the intake of food and water was recorded. At the beginning and end of treatment (at 09:00; 21:00; 02:00) plasma insulin and melatonin levels were measured, and (at 09:00) the enzymatic activities of catalase and superoxide dismutase (SOD) in erythrocytes were also measured. Glycaemia values were greater (p < 0.01) in n5-STZ rats than in ND rats, while insulin levels were lower (p < 0.05) at all times studied and these parameters were not altered by the TRP administration. Melatonin levels at 02:00 were lower in n5-STZ than in ND rats (p < 0.05). The TRP administration did not modify the circulating melatonin levels in ND rats, but raised (p < 0.01) the levels at 02:00 in the treated n5-STZ group. In ND rats after TRP administration there was a decline in catalase activity (p < 0.05), while in n5-STZ rats there was a rise (p < 0.01) at the end of treatment. However, there were no significant changes in SOD activity. There was increased food intake (g/day) in the treated n5-STZ group (p < 0.01). In conclusion, the oral administration of TRP did not modify glycaemia or insulinaemia levels, but raised melatonin levels in diabetic rats at 02:00, lowered catalase activity in ND rats but raised it in n5-STZ rats, and increased food intake in n5-STZ rats.  相似文献   

14.
Ultraviolet (UV) light (blacklight), which emits UV in the range of 320-400 nm, has been used worldwide in light trapping of insect pests. In this article, we test the hypothesis that one of the effects of UV light irradiation is to increase oxidative stress on insects. The effects of UV light irradiation on total antioxidant capacity, malondialdehyde (MDA) and protein carbonyl contents and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX) and glutathione-S-transferase (GST) were investigated in Helicoverpa armigera adults. The adults were exposed to UV light for various time periods (0, 30, 60 and 90 min). We found that exposure to UV light for 30 min resulted in increased total antioxidant capacity, protein carbonyl content and activities of SOD, CAT, POX and GST. When the exposure time lasted for 60 and 90 min, the protein carbonyl content and activities of CAT and GST remained significantly higher than the control. However, the antioxidant capacity and SOD activity returned to control levels, and POX activity decreased at 60 and 90 min. Our results confirm the hypothesis that UV light irradiation increases the level of oxidative stress in H. armigera adults.  相似文献   

15.
Bacillus thuringiensis is one of the most widely used sources of biorational pesticides, as well as a key source of genes for transgenic expression to provide pest resistance in plants. In this study the effect of Bacillus thuringiensis ssp. galleriae (Bt) infection on the activity of superoxide dismutase (SOD), glutathione S-transferase (GST), catalase (CAT), concentrations of oxidated and reduced thiols (RSSR/RSH) and malondialdehyde (MDA) was tested in the midgut of Galleria mellonella larvae. We found that Bt infection resulted in increased activities of SOD, GST, malondialdehyde and RSSR/RSH ratio the first day after inoculation. However, catalase activity decreased on the first and following days after bacterial infection by Bt. Our results confirm the hypothesis that Bt infection increases the level of oxidative stress in the larval midgut. In light of this study, it seems possible that oxidative damage contributes to cell death in the midgut during bacteriosis.  相似文献   

16.
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.  相似文献   

17.
Recently, numerous studies have shown antioxidant actions of melatonin. Melatonin at both physiological and pharmacological levels stimulates glutathione peroxidase, glutathione reductase and superoxide dismutase activities in the brains of rats and chickens. This study was designed to evaluate the effect of melatonin on nephropathy and oxidative stress under constant light exposure. Nephropathy was induced by adriamycin administered in a single dose (25 mg kg(-1) b.w., i.p.). Melatonin was injected i.p. (1,000 microg kg(-1) b.w./day). Malondialdehyde, reduced glutathione, glutathione peroxidase, glutathione reductase, glutathione transferase, catalase and superoxide dismutase were determined in kidney. Urea, creatinine and total proteins in plasma and proteinuria were evaluated and melatonin was determined. Results show a decrease in melatonin levels. Similar effects occurred with the antioxidant enzyme activities and reduced glutathione. Likewise, adriamycin and constant light induced significant enhancement of malondialdehyde. All changes induced both by adriamycin and constant light were reverted to normal by melatonin administration. Constant light exposure was associated with an increase in oxidative stress and nephropathy induced by adriamycin. Treatment with melatonin decreased lipid peroxides, and permitted a recovery of reduced glutathione, scavenger enzyme activity and parameters of renal function.  相似文献   

18.
Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training   总被引:10,自引:0,他引:10  
The purposes of this study were to determine whether exercise training induces increases in skeletal muscle antioxidant enzymes and to further characterize the relationship between oxidative capacity and antioxidant enzyme levels in skeletal muscle. Male Sprague-Dawley rats were exercise trained (ET) on a treadmill 2 h/day at 32 m/min (8% incline) 5 days/wk or were cage confined (sedentary control, S) for 12 wk. In both S and ET rats, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) activities were directly correlated with the percentages of oxidative fibers in the six skeletal muscle samples studied. Muscles of ET rats had increased oxidative capacity and increased GPX activity compared with the same muscles of S rats. However, SOD activities were not different between ET and S rats, but CAT activities were lower in skeletal muscles of ET rats than in S rats. Exposure to 60 min of ischemia and 60 min of reperfusion (I/R) resulted in decreased GPX and increased CAT activities but had little or no effect on SOD activities in muscles from both S and ET rats. The I/R-induced increase in CAT activity was greater in muscles of ET than in muscles of S rats. Xanthine oxidase (XO), xanthine dehydrogenase (XD), and XO + XD activities after I/R were not related to muscle oxidative capacity and were similar in muscles of ET and S rats. It is concluded that although antioxidant enzyme activities are related to skeletal muscle oxidative capacity, the effects of exercise training on antioxidant enzymes in skeletal muscle cannot be predicted by measured changes in oxidative capacity.  相似文献   

19.
Infiltration of wheat (Triticum aestivum L.) seedling leaves with excess of nitrate, nitrite, or the NO donor sodium nitroprusside leads to increase both in content of hydroperoxide and activity of peroxidase and decrease in superoxide dismutase (SOD) activity in the leaf apoplast. Polymorphism of extracellular peroxidases and the presence of Cu/Zn-SOD have been shown in apoplast. Using an ESR assay, a considerable increase in the level of NO following infiltration of leaf tissues with nitrite has been demonstrated. These data suggest development of both oxidative and nitrosative stresses in leaves exposed to high levels of nitrate or nitrite. A possible interplay of NO and reactive oxygen species in plant cells is discussed.  相似文献   

20.
Species- and tissue-specific defenses against the possibility of oxidative stress and lipid peroxidation were compared in adult fish, Oreochromis niloticus and Cyprinus carpio, exposed to 2,4-dichlorophenoxyacetic acid (2,4-D), azinphosmethyl and their combination for 96 h. Superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activities were monitored in kidney, brain and gill. In all exposure groups there was a marked increase in SOD activity in gill tissues in both fish species, while it was at the control level in other tissues. The highest elevation of SOD activity by combined treatment was observed in C. carpio. Individual and combined treatments caused an elevation in catalase and GPx activities in kidney of C. carpio. Catalase activity was unaffected in brain of O. niloticus, while GPx activity was decreased after all treatments. Glutathione S-transferase (GST) activity was higher than the control levels in kidney of both fish exposed to pesticides. No significant changes were observed in malondialdehyde level in kidney and brain of C. carpio. Our results indicate that the toxicities of azinphosmethyl and 2,4-D may be related to oxidative stress. Also, the results show that SOD activity in gill and GST activity in kidney may be used as biomarkers for pollution monitoring and indicate that the activities of certain biomarkers in C. carpio are more sensitive to pesticides than those in O. niloticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号