首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.  相似文献   

6.
Signaling from cAMP/PKA to MAPK and synaptic plasticity   总被引:17,自引:0,他引:17  
  相似文献   

7.
W Ai  J Gong  L Yu 《FEBS letters》1999,456(1):196-200
The involvement of protein kinases was studied in mu opioid receptor activation of mitogen-activated protein (MAP) kinase using cells transfected with the receptor clone. The cAMP/protein kinase A (PKA) pathway is known to be the major biochemical pathway for mu opioid receptor signaling. However, our data showed that stimulating adenylyl cyclase or activating PKA had no effect on mu receptor enhancement of MAP kinase activity, suggesting that the cAMP/PKA pathway is not involved in mediating the mu receptor activation of MAP kinase. Inhibition of phosphatidylinositol (PI) 3-kinase reduced mu receptor enhancement of MAP kinase activity, suggesting PI 3-kinase involvement. Together, these results show that cross-talk between the mu opioid receptor and the MAP kinase cascade is not mediated by the cAMP/PKA pathway, but involves PI 3-kinase.  相似文献   

8.
When faced with nutrient deprivation, Saccharomyces cerevisiae cells enter into a nondividing resting state, known as stationary phase. The Ras/PKA (cAMP-dependent protein kinase) signaling pathway plays an important role in regulating the entry into this resting state and the subsequent survival of stationary phase cells. The survival of these resting cells is also dependent upon autophagy, a membrane trafficking pathway that is induced upon nutrient deprivation. Autophagy is responsible for targeting bulk protein and other cytoplasmic constituents to the vacuolar compartment for their ultimate degradation. The data presented here demonstrate that the Ras/PKA signaling pathway inhibits an early step in autophagy because mutants with elevated levels of Ras/PKA activity fail to accumulate transport intermediates normally associated with this process. Quantitative assays indicate that these increased levels of Ras/PKA signaling activity result in an essentially complete block to autophagy. Interestingly, Ras/PKA activity also inhibited a related process, the cytoplasm to vacuole targeting (Cvt) pathway that is responsible for the delivery of a subset of vacuolar proteins in growing cells. These data therefore indicate that the Ras/PKA signaling pathway is not regulating a switch between the autophagy and Cvt modes of transport. Instead, it is more likely that this signaling pathway is controlling an activity that is required during the early stages of both of these membrane trafficking pathways. Finally, the data suggest that at least a portion of the Ras/PKA effects on stationary phase survival are the result of the regulation of autophagy activity by this signaling pathway.  相似文献   

9.
Meiotic development (sporulation) in the yeast Saccharomyces cerevisiae is induced by nutritional deprivation. Smk1 is a meiosis-specific MAP kinase homolog that controls spore morphogenesis after the meiotic divisions have taken place. In this study, recessive mutants that suppress the sporulation defect of a smk1-2 temperature-sensitive hypomorph were isolated. The suppressors are partial function alleles of CDC25 and CYR1, which encode the Ras GDP/GTP exchange factor and adenyl cyclase, respectively, and MDS3, which encodes a kelch-domain protein previously implicated in Ras/cAMP signaling. Deletion of PMD1, which encodes a Mds3 paralog, also suppressed the smk1-2 phenotype, and a mds3-Δ pmd1-Δ double mutant was a more potent suppressor than either single mutant. The mds3-Δ, pmd1-Δ, and mds3-Δ pmd1-Δ mutants also exhibited mitotic Ras/cAMP phenotypes in the same rank order. The effect of Ras/cAMP pathway mutations on the smk1-2 phenotype required the presence of low levels of glucose. Ime2 is a meiosis-specific CDK-like kinase that is inhibited by low levels of glucose via its carboxy-terminal regulatory domain. IME2-ΔC241, which removes the carboxy-terminal domain of Ime2, exacerbated the smk1-2 spore formation phenotype and prevented cyr1 mutations from suppressing smk1-2. Inhibition of Ime2 in meiotic cells shortly after Smk1 is expressed revealed that Ime2 promotes phosphorylation of Smk1's activation loop. These findings demonstrate that nutrients can negatively regulate Smk1 through the Ras/cAMP pathway and that Ime2 is a key activator of Smk1 signaling.  相似文献   

10.
11.
12.
Bidirectional microtubule-dependent organelle transport in melanophores is regulated by cAMP through organelle-bound protein kinase A (PKA); however, the mechanisms responsible for this regulation are unknown. A recent study by Gelfand and colleagues demonstrates that, in addition to PKA, transport is regulated by the organelle-bound mitogen-activated protein kinase (MAPK) signaling components ERK and MEK, whose activity is required for bidirectional transport along microtubules. This pathway apparently acts downstream of PKA, suggesting that bidirectional organelle transport is regulated by a hierarchical cascade of signaling pathways.  相似文献   

13.
Ustilago maydis, a pathogen of maize, is a useful model for the analysis of mating, pathogenicity, and the morphological transition between budding and filamentous growth in fungi. As in other fungi, these processes are regulated by conserved signaling mechanisms, including the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and at least one mitogen-activated protein kinase (MAP kinase) pathway. A current challenge is to identify additional factors that lie downstream of the cAMP pathway and that influence morphogenesis in U. maydis. In this study, we identified suppressor mutations that restored budding growth to a constitutively filamentous mutant with a defect in the gene encoding a catalytic subunit of PKA. Complementation of one suppressor mutation unexpectedly identified the ras2 gene, which is predicted to encode a member of the well-conserved ras family of small GTP-binding proteins. Deletion of the ras2 gene in haploid cells altered cell morphology, eliminated pathogenicity on maize seedlings, and revealed a role in the production of aerial hyphae during mating. We also used an activated ras2 allele to demonstrate that Ras2 promotes pseudohyphal growth via a MAP kinase cascade involving the MAP kinase kinase Fuz7 and the MAP kinase Ubc3. Overall, our results reveal an additional level of crosstalk between the cAMP signaling pathway and a MAP kinase pathway influenced by Ras2.  相似文献   

14.
15.
Platelets are the primary players in both thrombosis and hemostasis.Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function,such as adhesion,aggregation,and secretion.Elevation of intracellular cAMP,which induces the activation of PKA,results in the inhibition of platelet function.Thus,tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy.In this review,we summarize the PKA substrates and their contributions to platelet function,especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology.In addition,we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

16.
Platelets are the primary players in both thrombosis and hemostasis. Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function, such as adhesion, aggregation, and secretion. Elevation of intracellular cAMP, which induces the activation of PKA, results in the inhibition of platelet function. Thus, tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy. In this review, we summarize the PKA substrates and their contributions to platelet function, especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology. In addition, we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

17.
In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway is involved in the regulation of metabolism and cell cycle progression. The pathway is tightly regulated by several control mechanisms, as the feedback cycle ruled by the activity of phosphodiesterase. Here, we present a discrete mathematical model for the Ras/cAMP/PKA pathway that considers its principal cytoplasmic components and their mutual interactions. The tau-leaping algorithm is then used to perform stochastic simulations of the model. We investigate this system under various conditions, and we test how different values of several stochastic reaction constants affect the pathway behaviour. Finally, we show that the level of guanine nucleotides, GTP and GDP, could be relevant metabolic signals for the regulation of the whole pathway.  相似文献   

18.
The Ras-cyclic AMP pathway is connected to other nutrient-regulated signaling pathways and mediates the global stress responses of Saccharomyces cerevisiae. Here, we show that Rom2p, the Rho1 GTP/GDP exchange factor, can mediate stress responses and cell growth via the Ras-cAMP pathways. ROM2 was isolated as a suppresser of heat and NaCl sensitivity caused by the lack of the Ras-GTPase activator Ira2p or of cAMP phosphodiesterases. Subsequent analysis of strains with a rom2 deletion showed that Rom2p is essential for resistance to a variety of stresses caused by freeze-thawing, oxidants, cycloheximide, NaCl, or cobalt ions. Stress sensitivity and the growth defect caused by the rom2 deletion could be suppressed by depleting Ras or protein kinase A (PKA) activity or by overexpressing the high affinity cAMP phosphodiesterase Pde2p. In addition, overexpression of ROM2 could not rescue cells lacking the regulatory subunit of PKA, indicating that the Ras-adenylate, cyclase-PKA cascade is essential for Rom2p-mediated stress responses and cell growth. Deletion of IRA2 exacerbated the freeze-thaw sensitivity and growth defect of the rom2 mutant, indicating that Rom2p signaling may control Ras independently of IRA2. Increases in cAMP levels were detected in the rom2 deletion mutants, and these were comparable with the effects of an ira2 mutation. The effects of the deletion of ROM2 on sensitivity to hydrogen peroxide, paraquat, and cobalt ions, but not to caffeine, were reduced when a constitutive allele of RHO1 was introduced on a single copy plasmid. However, the effects of the deletion of ROM2 on sensitivity to diamide and NaCl were exacerbated. Taken together, our data indicate that Rom2p can regulate PKA activity by controlling cAMP levels via the Ras-cAMP pathway and that for those stresses related to oxidative stress, this cross-talk is probably mediated via the Rho1p-activated MAPK pathway.  相似文献   

19.
The eggs of Urechis unicinctus Von Drasche, an echiuroid, are arrested at P-I stage in meiosis. The meiosis is reinitiated by fertilization. Immunoblotting analysis using anti-ERK2 and anti-phospho-MAPK antibodies revealed a 44 kDa MAP kinase species that was constantly expressed in U. unicinctus eggs, quickly phosphorylated after fertilization, and dephosphorylated slowly before the completion of meiosis I. Phosphorylation of the protein was not depressed by protein synthesis inhibitor Cycloheximide (CHX), but was depressed by the MEK1 inhibitor PD98059. Under PD98059 treatment, polar body extrusion was suppressed and the function of centrosome and spindle was abnormal though GVBD was not affected, indicating that MAP kinase cascade was important for meiotic division of U. unicinctus eggs. Other discovery includes: A23187 and OA could parthenogenetically activate U. unicinctus eggs and phosphorylated 44 kDa MAP kinase species, indicating that the effect of fertilization on reinitiating meiosis and phosphorylation of 44 kDa MAP kinase specie is mediated by raising intracellular free calcium and by phosphorylation of some proteins, and that phosphotase(s) sensitive to OA is responsible for arresting U. unicinctus eggs in prophase I. diC8, an activator of PKC, accelerated the process of U. unicinctus egg meiotic division after fertilization and accelerated the dephosphorylation of 44 kDa MAP kinase specie, which implied that the acceleration effect of PKC on meiotic division was mediated by inactivation of MAP kinase cascade. Elevating cAMP/PKA level in U. unicinctus eggs had no effect on meiotic division of the eggs.  相似文献   

20.
Transforming growth factor beta (TGFbeta) interacts with cell surface receptors to initiate a signaling cascade critical in regulating growth, differentiation, and development of many cell types. TGFbeta signaling involves activation of Smad proteins which directly regulate target gene expression. Here we show that Smad proteins also regulate gene expression by using a previously unrecognized pathway involving direct interaction with protein kinase A (PKA). PKA has numerous effects on growth, differentiation, and apoptosis, and activation of PKA is generally initiated by increased cellular cyclic AMP (cAMP). However, we found that TGFbeta activates PKA independent of increased cAMP, and our observations support the conclusion that there is formation of a complex between Smad proteins and the regulatory subunit of PKA, with release of the catalytic subunit from the PKA holoenzyme. We also found that the activation of PKA was required for TGFbeta activation of CREB, induction of p21(Cip1), and inhibition of cell growth. Taken together, these data indicate an important and previously unrecognized interaction between the TGFbeta and PKA signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号