首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three aphid species were compared with respect to ability of enhancing the nutritional quality of their host plants. Rhopalosiphum padi, which does not induce macroscopic changes in its host plants, was compared with Schizaphis graminum and Diuraphis noxia, both of which induce distinctive types of chlorotic lesions. Phloem sap samples were collected from severed stylets of feeding aphids and from exudates of cut leaves of plants uninfested or infested with each aphid species. Samples were analyzed for concentrations of individual amino acids.Compared to R. padi, S. graminum ingested phloem sap with a two-fold higher concentration of amino acids and a much higher proportion of essential amino acids. Similar differences between these two aphid species were observed on both wheat and barley. For each aphid species, the absolute concentrations of amino acids and the relative proportions of essential amino acids were similar between the two host plants. Effects of D. noxia were similar to those of S. graminum, though less dramatic. Exudates from leaves infested with each aphid species showed relative concentrations of individual amino acids that were similar to those in the corresponding stylet exudates. Based on comparison of stylet exudates and cut leaf exudates from infested and uninfested plants, R. padi seems to have little effect on amino acid composition of phloem. Changes in the phloem induced by both S. graminum and D. noxia appear to be systemic, affecting at least the whole leaf they are feeding on. The changes observed for D. noxia and for S. graminum are likely to be nutritionally advantageous for the aphids and are expected to affect the aphids' dependence on nutritional supplementation by intracellular symbionts (Buchnera).  相似文献   

2.
The impact of the leaf-chlorosis-eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and the nonchlorosis-eliciting bird cherry-oat aphid, Rhopalosiphum padi (L.), feeding on D. noxia-susceptible and -resistant cereals was examined during the period (i.e., 3, 6, and 9 d after aphid infestation) that leaf chlorosis developed. After aphid number, leaf rolling and chlorosis ratings, and fresh leaf weight were recorded on each sampling date, total protein content, peroxidase, catalase, and polyphenol oxidase activities of each plant sample were determined spectrophotometrically. Although R. padi and D. noxia feeding caused significant increase of total protein content in comparison with the control cereal leaves, the difference in total protein content between R. padi and D. noxia-infested leaves was not significant. Although R. padi-feeding did not elicit any changes of peroxidase specific activity in any of the four cereals in comparison with the control leaves, D. noxia feeding elicited greater increases of peroxidase specific activity only on resistant 'Halt' wheat (Triticum aestivum L.) and susceptible 'Morex' barley (Hordeum vulgare L.), but not on susceptible 'Arapahoe' and resistant 'Border' oat (Avena sativa L.). D. noxia-feeding elicited a ninefold increase in peroxidase specific activity on Morex barley and a threefold on Halt wheat 9 d after the initial infestation in comparison with control leaves. Furthermore, D. noxia feeding did not elicit any differential changes of catalase and polyphenol oxidase activities in comparison with either R. padi feeding or control leaves. The findings suggest that D. noxia feeding probably results in oxidative stress in plants. Moderate increase of peroxidase activity (approximately threefold) in resistant Halt compared with susceptible Arapahoe wheat might have contributed to its resistance to D. noxia, whereas the ninefold peroxidase activity increase may have possibly contributed to barley's susceptibility. Different enzymatic responses in wheat, barley, and oat to D. noxia and R. padi feeding indicate the cereals have different mechanisms of aphid resistance.  相似文献   

3.
Amino acid budgets in three aphid species using the same host plant   总被引:3,自引:0,他引:3  
Abstract. Nutrient provisioning in aphids depends both on the composition of ingested phloem sap and on the biosynthetic capabilities of the aphid and its intracellular symbionts. Amino acid budgets for three aphid species, Rhopalosiphum padi (L.), Schizaphis graminum (Rondani) and Diuraphis noxia (Mordvilko), were compared on a single host plant species, wheat Triticum aestivum L. Ingestion of amino acids from phloem, elimination of amino acids in honeydew, and the content of amino acids in aphids tissue were measured. From these values, ingestion rates were estimated and compared to honeydew and to estimated composition of aphid proteins. Ingestion rate was lowest in D. noxia due to low growth rate and low honeydew production; intermediate in S. graminum due to higher growth rate and intermediate honeydew production; and highest in R. padi , which had the highest rates for both variables. Both D. noxia and S. graminum induced increases in the amino acid content of ingested phloem. These changes in phloem content, combined with differences in ingestion rates, resulted in large differences among aphids in estimated rates of ingestion of individual amino acids. In honeydew, most essential amino acids were found in low amounts compared with the amounts ingested, especially for methionine and lysine. A few amino acids (arginine, cystine, histidine and tryptophan) were more abundant in honeydew of some aphids, suggesting oversupply. Aphid species differed in the composition of free amino acids in tissue but showed very similar composition in protein, implying similar requirements among the aphids. In R. padi and D. noxia , most essential amino acids were ingested in amounts insufficient for growth, implying dependence on symbiont provisioning. In S. graminum , most amino acids were ingested in amounts apparently sufficient for growth.  相似文献   

4.
In spring 2003, several outbreaks of the Russian wheat aphid, Diuraphis noxia (Mordvilko), were reported in fields of supposedly resistant wheat cultivars ('Stanton', 'Halt', and 'Prairie Red') in eastern Colorado. We conducted two laboratory experiments to compare the biological performance of this new biotype 2 (B2) to that of two D. noxia collections of biotype 1 (B1) from western Kansas by using three wheat cultivars as host plants: 'Trego', a susceptible cultivar, and Stanton and Halt, two cultivars with different genetic sources of resistance. Survival of solitary nymphs from first instar to adult for the two clones of B1 on Trego was 96 and 90%, respectively, compared with 67 and 43% on Stanton, and 65 and 57% on Halt. In contrast, B2 had 60% survival on Trego, 43% survival on Halt, and 85% survival on Stanton. One clone of B1 required longer to mature on Halt compared with Trego or Stanton, but no other differences in developmental time among cultivars were significant. The standardized fecundity of solitary foundresses of the B1 clones was 19.6 and 20.1 nymphs on Trego, compared with 4.6 and 0.9 on Stanton, and 2.8 and 1.1 on Halt, respectively, over the same period. In contrast, fecundity of B2 was 21.1, 20.8, and 19.7 on Trego, Stanton, and Halt, respectively. When larger colonies developed on individual plants over longer periods, Trego supported the largest number of B1 aphids by experiment's end, whereas Stanton and Halt yielded the largest numbers of B2. The order of overall plant damage was Trego > Stanton > Halt when infested with B1, with no significant differences for B2. Trego had more pronounced leaf rolling than other cultivars, independent of biotype. Collectively, the results suggest that D. noxia B2 from Colorado has evolved cross-virulence to both Dn4- and Dny-based resistance sources.  相似文献   

5.
The impact of light and its role in Russian wheat aphid, Diuraphis noxia (Mordvilko), damage symptom formation, and photosynthetic capacity in 'Arapahoe' wheat (Triticum aestivum L.) were examined. After 72 h under continuous dark or continuous light regimes, the number of aphids (nymphs), leaf rolling and chlorosis ratings, fresh leaf weight, and chlorophyll contents were recorded. Photosynthetic rates, chlorophyll a, kinetics and chlorophyll extractions also were determined. Aphid infestation caused significant reductions in plant height, fresh weight, gas exchange, and chlorophyll fluorescence only under continuous light. Under the 72 h continuous dark regime, aphid infestation did not cause either damage symptom formation or reduction in plant growth or metabolism (photosynthesis). Furthermore, significantly more D. noxia nymphs were produced under continuous light condition than continuous dark. Our results demonstrate that the development of D. noxia feeding damage symptoms (i.e., leaf rolling and chlorotic streaks) on susceptible wheat seedlings is a light-activated process, even though the elicitor of the plant damage symptoms is aphid feeding.  相似文献   

6.
How nutritionally imbalanced is phloem sap for aphids?   总被引:8,自引:0,他引:8  
Aphids harbour intracellular symbionts (Buchnera) that provide their host with amino acids present in low amounts in their diet, phloem sap. To find out the extent to which aphids depend on their symbionts for synthesis of individual essential amino acids, we have evaluated how well phloem sap amino acid composition matches the aphids' needs. Amino acid compositions of the ingested phloem sap were compared to amino acids in aphid body proteins and also to available information about optimal diet composition for other plant feeding insects. Phloem sap data from severed stylets of two aphid species, Rhopalosiphum padi (L.) (Homoptera: Aphididae) feeding on wheat, and Uroleucon sonchi (L.) (Homoptera: Aphididae) feeding on Sonchus oleraceus (L.), together with published information on phloem sap compositions from other plant species were used.Phloem sap has in general only around 20% essential amino acids, with a range from 15–48%. Aphid body proteins and optimal diets for two other plant feeding insects have around 50%. The phloem sap of early flowering S. oleraceus ingested by U. sonchi contained 48%, which seems to be exceptional. Aphids feeding on different plants appear to be very differently dependent on their symbionts for their overall essential amino acid synthesis, due to the large variation in proportion of essential amino acids in phloem sap from different plants.The profile of the essential amino acids in phloem sap from different plant species corresponds rather well to profiles of both aphid body proteins and optimal diets determined for plant feeding insects. However, methionine and leucine in phloem sap are in general low in these comparisons, suggesting a higher dependence on the symbiont for synthesis of these amino acids. Concentrations of several essential amino acids in phloem from different plant species seem to vary together, suggesting that levels of symbiont provisioning of different amino acids are adjusted in parallel.  相似文献   

7.
This study was designed to categorize the resistance to the Russian wheat aphid, Diuraphis noxia (Mordvilko), resistant hard red winter wheat, Halt, as compared with susceptible wheat, TAM 107, at four different growth stages. Antixenosis was expressed in Halt at growth stage Zadoks 30. Antibiosis in Halt affected fecundity, number of aphids produced per reproductive day, maximum number of nymphs produced in one day, and intrinsic rate of increase. Fecundity was lower on Halt than TAM 107, and more nymphs were produced on both varieties at growth stage 20 than 10 and 40. Fewer nymphs were produced per reproductive day and on maximum production days by aphids reared on Halt than by those reared on TAM 107. The intrinsic rate of increase of Russian wheat aphids reared on Halt was lower than aphids reared on TAM 107. Differences in plant height and plant dry weight did not occur. Chlorosis ratings showed greater damage at the earlier stages in Halt and TAM 107 and significantly more damage in TAM 107 than Halt at growth stages 10, 20, and 30. Leaf rolling occurred on infested plants of TAM 107 at growth stages 10, 20, and 30, but not growth stage 40. Halt plants did not exhibit leaf rolling. The presence of a significant level of tolerance could make Halt compatible with other integrated pest management programs. However, care should be taken with cultivars containing evidence of antixenosis or antibiosis that could cause selective pressure on the Russian wheat aphid, potentially causing biotypes to be produced.  相似文献   

8.
Comparisons were made between the free amino acid composition in leaf exudates and that in pure phloem sap, using twin samples taken from a single leaf of two oat (Avena sativa L.) and three barley (Hordeum vulgare L.) varieties. Leaf exudate was collected in a 5 mm EDTA-solution (pH 7.0) from cut leaf blades and phloem sap was obtained through excised aphid (Rhopalosiphum padi L.) stylets. Fluorescent derivatives of amino acids were obtained using 9-fluorenylmethyl chloroformate and were separated by means of high performance liquid chromatography. The total concentration of free amino acids varied considerably in the exudate samples. There was no correlation between the total amino acid content in the exudate samples and that of the corresponding phloem sap samples, but the amino acid composition of the corresponding samples was highly correlated (median R2-value 0.848). There was only limited between-plant variation in phloem sap amino acid composition. Nevertheless, in comparisons involving all samples, many of the amino acids showed significant correlations between their relative amounts in exudate and phloem sap. The results presented here indicate that the exudate technique holds great promise as an interesting alternative to the laborious and time-consuming stylet-cutting technique of obtaining samples for comparative studies of phloem sap.  相似文献   

9.
Russian wheat aphid, Diuraphis noxia (Mordvilko), feeding injury on 'Betta' wheat isolines with the Dn1 and Dn2 genes was compared by assessing chlorophyll and carotenoid concentrations, and aphid fecundity. The resistant Betta isolines (i.e., Betta-Dn1 and Betta-Dn2) supported similar numbers of aphids, but had significantly fewer than the susceptible Betta wheat, indicating these lines are resistant to aphid feeding. Diuraphis noxia feeding resulted in different responses in total chlorophyll and carotenoid concentrations among the Betta wheat isolines. The infested Betta-Dn2 plants had higher levels of chlorophylls and carotenoids in comparison with uninfested plants. In contrast, infested Betta-Dn1 plants had the same level of chlorophyll and carotenoid in comparison with uninfested plants. Our data provide essential information on the effect of D. noxia feeding on chlorophyll and carotenoid concentrations for Betta wheat and its isolines with D. noxia-resistant Dn1 and Dn2 genes.  相似文献   

10.
The nutritional quality of phloem sap utilized by natural aphid populations   总被引:10,自引:0,他引:10  
Abstract.
  • 1 The amino acid content of phloem exudates from leaves and of aphid honeydew were adopted as indices of the nutritional quality of phloem sap for aphids. Four plant species and associated leaf-dwelling aphids were investigated: the sycamore Acer pseudoplanatus and sycamore aphid Drepanosiphum platanoides; Prunus domestica (victoria plum) and the mealy plum aphid Hyalopterus pruni; and the spindle tree Euonymus europaeus and broad-bean Vicia faba, both hosts of the black bean aphid Aphis fabae.
  • 2 The concentration of amino acids in the phloem exudates varied with: (a) plant species (greater in the herb Vicia than in the tree species), (b) season (greater in the autumn than summer for Acer and Euonymus), and (c) position (greater in flush leaves than mature leaves of Prunus).
  • 3 For Acer and Prunus and their aphids, the concentration of amino acids in phloem exudates was significantly correlated with the amino acid content of the aphid honeydew.
  • 4 The amino acids in all exudates and honeydew were dominated by non-essential amino acids (glutamic acid, glutamine, asparagine or serine, varying with season and between plant species). The sole major discrepancy between the amino acid profiles of exudates and honeydew was the production of asparagine-rich honeydew by aphids feeding on leaves, whose exudates were dominated by glutamic acid; this applied to both H.pruni on mature Prunus leaves and Drepanosiphum platanoides on summer-leaves of Acer.
  • 5 It is suggested that EDTA-exudation may be a useful technique to study nutritional correlates of aphid life cycles, e.g. the time of migration between primary and secondary plant hosts.
  相似文献   

11.
Indole-3-acetic acid-l-14C and 14C-sucrose labels were used to study the effects of greenbugs, Schizaphis graminum (Rondani), and Russian wheat aphids, Diuraphis noxia (Mordvilko), on phloem function of wheat (Triticum aesticum L.). Greenbug feeding significantly reduced translocation from the immediate feeding site; however, phloem integrity was not impeded. In contrast, Russian wheat aphids had little effect on vein loading or phloem translocation at the feeding site. Similar results were obtained when resistant and susceptible wheats were infested with three different greenbug biotypes. Greenbugs fed artificial diets containing 14C-sucrose injected salivary material that was translocated to both root and shoot systems. The accumulation of salivary constituents in the roots of wheat seedlings fed upon by greenbugs may account for the significant reductions in root biomass that have previously been reported.  相似文献   

12.
The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), is a major pest of bread wheat, Triticum aestivum L. (em Thell), in most wheat-growing areas worldwide. Aphid-resistant cultivars are used to combat this pest, but very little is known about the molecular basis of resistance. In this study, differential gene expression in D. noxia biotype 1-resistant wheat plants containing the Dnx gene and D. noxia biotype 1 feeding on Dnx plants was investigated using suppressive subtraction hybridization. The derived subtracted cDNA library includes sequences similar to Pto and Pti1, genes involved in gene-for-gene recognition of and resistance to bacterial speck disease in tomato, Lycopersicon esculentum (L.). Pto- and Pti1-like sequences contain an activation domain with conserved amino acid residues crucial for avr protein recognition and binding by Pto, and avr-Pto phosphorylation of Pti1. Wheat defense signaling is represented by sequences putatively involved in producing sterols, jasmonates, Ca2+, and abscisic and gibberellic acids. We suggest that reductions in populations of D. noxia fed Dnx plants are related to the expression of sequences involved in defensive chemical production, cellular transport, and exocytosis. Dnx plant tolerance of D. noxia feeding is proposed to be based on the expression of sequences putatively involved in self-defense against reactive oxygen species and toxins, and proteolysis; DNA, RNA, and protein synthesis; chloroplast and mitochondrial function; carbohydrate metabolism; and maintenance of cell homeostasis. D. noxia unsuccessfully counter Dnx by expressing sequences putatively involved in detoxification; proteolysis; DNA, RNA, protein, and lipid synthesis; carbohydrate metabolism; and mitochondrial function.  相似文献   

13.
The objective of this study was to assess whether a whole plant N‐feedback regulation impact on nitrogen fixation in Medicago truncatula would manifest itself in shifts of the composition of the amino acid flow from shoots to nodules. Detected shifts in the phloem amino acid composition were supposed to be mimicked through artificial phloem feeding and concomitant measurement of nodule activity. The amino acid composition of the phloem exudates was analyzed from plants grown under the influence of treatments (limiting P supply or application of combined nitrogen) known to reduce nodule nitrogen fixation activity. Plants in nutrient solution were supplied with sufficient (9 µM) control, limiting (1 µM) phosphorus or 3 mM NH4NO3 (downregulated nodule activity). Low phosphorus and the application of NH4NO3 reduced per plant and specific nitrogenase activity (H2 evolution). At day 64 of growth, phloem exudates were collected from cuts of the shoot base. The amount of amino acids was strongly increased in both phloem exudates and nodules of the treatments with downregulated nodule activity. The increase in the downregulated treatments was almost exclusively the result of a higher proportion of asparagine in both phloem exudates and nodules. Leaf labeling with 15N showed that nitrogen from the leaves is retranslocated to nodules. An artificial phloem feeding with asparagine resulted in an increased concentration of asparagine in nodules and a decreased nodule activity. A possible role of asparagine in an N‐feedback regulation of nitrogen fixation in M. truncatula is discussed.  相似文献   

14.
Apterous populations of Chaitophorous populicola Thomas (Homoptera: Aphididae) appear to track Eastern cottonwood (Populus deltoides Bartr.) leaf development. Few aphids occur on mature leaves. Marked individual aphids on leaves of different developmental stages were observed through a period of new leaf initiation. Nymph and adult C. populicola frequently track leaf development by moving up to younger leaves. A comparison of phloem sap constituents and leaf toughness among leaf developmental stages revealed some differences that could be used by C. populicola to determine leaf age. Phloem sap exudates, collected from P. deltoides leaves of different developmental stages, were analyzed by high-performance liquid chromatography for free amino acids and the phenolic glycoside salicin. Sucrose concentration in exudates, indicative of phloem sap exudation rate, was uniform among leaf stages. Of 20 amino acids examined, only aspartic acid and gamma-amino-n-butyric acid (GABA) concentrations differed significantly between leaf stages. Forward stepwise discriminant function analysis showed that seven of the amino acids analyzed are useful for classifying leaf maturity groupings. Aphid-infested cottonwoods had lower cystine concentrations in phloem sap than aphid-free plants. Salicin concentration was significantly higher in new leaves. Leaf toughness was assessed by lignin density and distance measurements in petiole cross-sections. Rapidly expanding leaves had significantly less lignification and new leaves had shorter distances to the vascular bundles than senescent leaves. These physiological and phytochemical differences among P. deltoides leaf developmental stages may contribute to the leaf stage selection patterns exhibited by the aphid, C. populicola.  相似文献   

15.
The Russian wheat aphid (RWA, ( Diuraphis noxia ) and the Bird cherry-oat aphid (BCA, ( Rhopalosiphum padi L.) cause severe damage to grain crops, including barley. An investigation of the effects of these aphids on a susceptible cultivar revealed that BCA-infested barley plants remained healthy looking for 2 weeks after feeding commenced. In contrast, signs of stress and damage, including chlorosis and leaf necrosis were evident in RWA-infested plants. Our study suggests that damage to the vascular tissue because of sustained feeding by BCA was not as extensive as that caused by RWA. In addition, there is a marked difference in the salivary secretion pattern within xylem elements punctured by aphids tapping the xylem for water. RWA deposit electron-dense, amorphous to smooth saliva, which completely encases the inner walls of affected elements, and saliva encases pit membranes between xylem elements, and between xylem vessels and xylem parenchyma. Xylem tapped by BCA contained more granular saliva, which apparently does not occlude vessel wall apertures or the pit membranes to the same extent, as was observed with RWA. Damage to phloem tissue, including phloem parenchyma elements, sieve tube–companion cell (CC–ST) complexes as well as thick-walled ST, was extensive. Plasmodesmata between phloem parenchyma elements as well as pore plasmodesmata between the CC and ST were occluded by callose. We conclude that severe, perhaps permanent damage to conducting elements in RWA-infested leaves may be responsible for the detrimental chlorosis and necrosis symptoms. These symptoms are absent in BCA-infested plants.  相似文献   

16.
Abstract.  1. The growth (increase in height and leaf number) of four grass species was reduced by a −0.5 MPa drought stress, but the performance of an associated herbivore, Rhopalosiphum padi (L.), was not affected consistently. The intrinsic rate of increase of R. padi was reduced by drought stress on three grass species, including Dactylis glomerata (L.), but was unaffected on Arrhenatherum elatius (L.). Therefore, there is no general relationship in the effect of plant drought on an insect herbivore, even among closely related host plant species.
2. Drought stress increased the quality of plant phloem sap, as indicated by increased sieve element osmotic pressure and essential amino acid concentrations. Thus, diet quality could not account for the reduced performance of R. padi under drought stress. The concentration of essential amino acids in the phloem of well-watered A. elatius was, however, lower than that of well-watered D. glomerata , correlating with the decreased performance of aphids on well-watered A. elatius .
3. There were no differences in aphid feeding duration between watering treatments or plant species but sap ingestion rates were reduced significantly under drought stress.
4. Using the measure of dietary amino acid concentrations and the estimate of sap ingestion, the essential amino acid flux through aphids was calculated. Compared with the flux through aphids feeding on well-watered D. glomerata , there was a reduction in aphids feeding on drought-stressed D. glomerata and drought-stressed A. elatius due to lower sap ingestion rates. The flux through aphids on well-watered A. elatius was also reduced due to low phloem essential amino acid concentrations. Thus, the performance of an aphid is correlated with the availability and accessibility of essential amino acids.  相似文献   

17.
We examined the physiological and biochemical responses of resistant ('Halt' and 'Prairie Red') and susceptible ('TAM 107') wheat, Triticum aestivum L., to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). Photosynthetic capacity was evaluated by measuring assimilation/internal CO2 (A/Ci) curves, chlorophyll fluorescence, chlorophyll, and nonstructural carbohydrate content. Total protein and peroxidase specific activity also were determined. No significant differences were detected in chlorophyll concentration between aphid-infested and control TAM 107 plants. The aphid-infested resistant cultivars had similar or significantly higher chlorophyll concentrations compared with their respective control plants. Measurements over time showed that infested Halt plants had delays in photosynthetic senescence, Prairie Red plants had photosynthetic rate changes that were similar to control plants, and TAM 107 plants displayed accelerated photosynthetic senescence patterns. The photochemical and nonphotochemical quenching coefficients were significantly higher in infested Halt plants compared with their respective control plants on day 3. Infested TAM 107 plants had significantly higher photochemical quenching compared with control plants at all times evaluated, and they had significantly higher nonphotochemical quenching on day 3. Throughout the experiment, infested Prairie Red plants exhibited photochemical and nonphotochemical quenching coefficient values that were not significantly different from control plants. Total protein content was not significantly different between aphid-infested and control plants for all cultivars. Differences between physiological responses of infested susceptible and resistant cultivars, particularly temporal changes in photosynthetic activity, imply that resistant Halt and Prairie Red wheat tolerate some impacts of aphid injury on photosynthetic integrity.  相似文献   

18.
Changes in fitness parameters as a function of colony size (one versus 10 aphids) were measured in two biotypes (RWA1 and RWA2) of the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), feeding on three cultivars of wheat, Triticum aestivum L., at two temperatures. 'Trego' is a cultivar with no specific resistance to D. noxia, whereas, 'Stanton' and 'Halt' express Dny and Dn4 resistance sources, respectively. Feeding in a group accelerated the development of RWA1 on Trego and Stanton at 20 degrees C, but not at 24 degrees C, whereas grouped RWA2 developed faster than solitary RWA2 on all three cultivars at 24 degrees C, but not at 20 degrees C. Survival (first instar-adult) of RWA2 also was improved by grouping on Stanton and Halt at 24 degrees C, but solitary RWA2 survived better at 20 degrees C on all three cultivars. The reproductive rate of RWA1 was improved by grouping on Trego and Stanton at both temperatures, but only on Halt at 24 degrees C. Lifetime fecundity of RWA1 also was increased by grouping in all cases except for Trego at 20 degrees C. Grouped development increased the reproductive rate of RWA2 on all three cultivars at 24 degrees C, but had no effect at 20 degrees C. Grouped RWA2 developed and reproduced faster than grouped RWA1 on all three cultivars at 24 degrees C. Thus, the fitness of D. noxia was positively correlated with group size during colony establishment, but the effects were sensitive to temperature, being more pronounced at 20 degrees C for RWA1 and at 24 degrees C for RWA2.  相似文献   

19.
Hayashi  H.  Nakamura  S.  Ishiwatari  Y.  Mori  S.  Chino  M. 《Plant and Soil》1993,(1):171-174
Pure phloem sap was collected from insects feeding on rice (Oryza sativa L.) leaves by a laser technique similar to the aphid stylet technique. Rapid circulation of nitrogen in the sieve tubes was demonstrated directly using 15N as a tracer. Application to the roots of the metabolic inhibitors of amino acids, aminooxyacetate and methioninesulfoximine, changed the amino acid composition in the sieve tubes. Feeding methionine to leaf tips resulted in its bulk transfer into the sieve tubes. In vitro experiments confirmed the existence of protein kinases in the pure rice phloem sap. The phosphorylation status of the sieve tube sap proteins was affected by the light regime. The possibility that changes in chemical composition or protein modification such as phosphorylation in the sieve tubes might affect plant growth are discussed.Analysis of pure phloem sap collected from rice plants by insect laser technique has shown dynamic changes in the chemical composition and the quality of proteins in the sap.  相似文献   

20.
The failure of a nutritionally balanced diet to ameliorate the impact of symbiont disruption in the pea aphid Acyrthosiphon pisum (Harris) was investigated using two approaches. The assimilation of dietary nutrients by aphids was investigated using chemically-defined diets containing 3 H-labelled inulin and 14C-labelled sucrose or amino acids. Symbiotic aphids (i.e., aphids containing their bacteria) had a high sucrose demand and assimilated 72% of sucrose ingested in the diet, whereas the assimilation of sucrose by aposymbiotic aphids (in which the bacteria had been disrupted), was significantly reduced to 47%. The assimilation of individual dietary amino acids by symbiotic aphids varied between 61 and 92%, and there was no impact on the feeding or assimilation rate when the aphids were fed a phloem sap-like diet containing a reduced amount of essential amino acids. Consequently, the absolute amount of each essential amino acid assimilated by symbiotic aphids feeding on a phloem sap-like diet was reduced by 36–59%. Aposymbiotic aphids consistently assimilated a lower proportion of ingested amino acids, and lysine in particular was poorly assimilated from the diet. In a second experiment, the allocation of free amino acids in the haemocoel to aphid embryos was investigated following microinjection of 14C-labelled amino acids. After 2 h, radiolabel could be detected at varying levels from the embryo complement of both symbiotic and aposymbiotic aphids, indicating rapid but selective uptake by the embryos. The essential amino acids phenylalanine and lysine were incorporated into the protein fraction of embryo tissues, but the rate of incorporation per unit biomass was approximately 4-fold higher in the embryos of aposymbiotic aphids, possibly reflecting increased demand due to the lack of amino acid provisioning from the symbiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号