首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.  相似文献   

2.
LNA: a versatile tool for therapeutics and genomics   总被引:21,自引:0,他引:21  
  相似文献   

3.
4.
Sequence-specific hybridization of antisense and antigene agent to the target nucleic acid is an important therapeutic strategy to modulate gene expression. However, efficiency of such agents falls due to inherent intramolecular-secondary-structures present in the target that pose competition to intermolecular hybridization by complementary antisense/antigene agent. Performance of these agents can be improved by employing structurally modified complementary oligonucleotides that efficiently hybridize to the target and force it to transit from an intramolecular-structured-state to an intermolecular-duplex state. In this study, the potential of variably substituted locked nucleic acid-modified oligonucleotides (8mer) to hybridize and disrupt highly stable, secondary structure of nucleic acid has been biophysically characterized and compared with the conventionally used unmodified DNA oligonucleotides. The target here is a stem-loop hairpin oligonucleotide-a structure commonly present in most structured-nucleic acids and known to exhibit an array of biological functions. Using fluorescence-based studies and EMSA we prove that LNA-modified oligonucleotides hybridize to the target hairpin with higher binding affinity even at lower concentration and subsequently, force it to assume a duplex conformation. LNA-modified oligonucleotides may thus, prove as potential therapeutic candidates to manipulate gene expression by disruption of biologically relevant nucleic acid secondary structure.  相似文献   

5.
Vester B  Wengel J 《Biochemistry》2004,43(42):13233-13241
Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. Structural studies have shown that LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The wide applicability of LNA oligonucleotides for gene silencing and their use for research and diagnostic purposes are documented in a number of recent reports, some of which are described herein.  相似文献   

6.
Locked Nucleic Acid (LNA) is a unique nucleic‐acid modification possessing very high binding affinity and excellent specificity toward complementary RNA or DNA oligonucleotides. The remarkable properties exhibited by LNA oligonucleotides have been employed in different nucleic acid‐based therapeutic strategies both in vitro and in vivo. Herein, we highlight the applications of LNA nucleotides for controlling gene expression.  相似文献   

7.
Point mutations associated with isoniazid resistance in Mycobacterium tuberculosis (MTB) have been analyzed in codon 315 of the katG gene by conventional polymerase chain reaction (PCR) using primers containing locked nucleic acid (LNA) modified nucleotides. Purity and structure of primers containing 5 LNA monomers of 17 nucleotides in length were characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and a 17-mer duplex formed by two complementary oligonucleotides was characterized by the method of thermal denaturation. The duplex containing five LNA monomers per each strand was characterized by a higher melting temperature than it was expected using extrapolation of theoretical calculation for nucleotide modification of one strand of the duplex. Detection of any of six possible mutations in katG codon 315 (i.e. discrimination between sensitive and resistant MTB) requires just one PCR employing a set of two primers with one LNA-modified primer; this is an important advantage of oligonucleotides containing LNA over unmodified nucleotides: employment of multiplex PCR would require up to 12 primers. Problems of control of oligonucleotide modification by LNA monomers are discussed.  相似文献   

8.
Kaur H  Wengel J  Maiti S 《Biochemistry》2008,47(4):1218-1227
A locked nucleic acid (LNA) monomer is a conformationally restricted nucleotide analogue exhibiting enhanced hybridization efficiency toward complementary strand. The potential of LNA-based oligonucleotides has been sought to improve the selectivity and specificity of probe sets employed in detection and specific targeting of nucleic acids. We have evaluated the influence of "locked nucleic acid" residues on hybridization thermodynamics, counterions and hydration of DNA.RNA heteroduplex using spectroscopic and calorimetric techniques. One to three LNA substitutions have been introduced either at the adenine (5'-AGCACCAG) or thymine (5'-TGCTCCTG) residues of the DNA strand. A complete thermodynamic profile for heteroduplex formation suggested that LNA-induced stabilization results from a favorable increase in the enthalpy of hybridization that compensates for the unfavorable entropy change. Analysis of differential scanning calorimetry data indicated a nonzero heat capacity change, DeltaCp, accompanying the heteroduplex formation. Isothermal titration calorimetry measurements indicated an increase in binding affinity of the two strands as the LNA content of the heteroduplex is increased. Overall our result demonstrated that the effect of LNA-substitution at the thymine residue is more pronounced compared to the adenine residue. Furthermore, optical melting studies showed that, compared to an unmodified duplex, the formation of LNA-modified duplex is accompanied by a higher uptake of counterions and a lower uptake of water molecules. Our result, thus, presents a preliminary attempt toward the characterization of hybridization thermodynamics of the LNA-based probe-target sets, which will in turn aid in the selection of optimal conditions for hybridization experiments, and evaluation of the minimum probe-length required for hybridization and cloning experiments.  相似文献   

9.
10.
Kaur H  Arora A  Wengel J  Maiti S 《Biochemistry》2006,45(23):7347-7355
A locked nucleic acid (LNA) monomer is a conformationally restricted nucleotide analogue with an extra 2'-O, 4'-C-methylene bridge added to the ribose ring. LNA-modified oligonucleotides are known to exhibit enhanced hybridization affinity toward complementary DNA and RNA. In this work, we have evaluated the hybridization thermodynamics of a series of LNA-substituted DNA octamers, modified to various extents by one to three LNA substitutions, introduced at either adenine (5'-AGCACCAG) or thymine (5'-TGCTCCTG) nucleotides. To understand the energetics, counterion effects, and the hydration contribution of the incorporation of LNA modification, a combination of spectroscopic and calorimetric techniques was used. The CD spectra of the corresponding duplexes showed that the modified duplexes adopt an A-type conformation. UV and DSC melting studies revealed that each type of duplex unfolds in a two-state transition. A complete thermodynamic profile at 5 degrees C indicated that the net effect of modification on thermodynamic parameters might be positional and that the neighboring bases flanking the modification might influence the favorable formation of the modified duplexes. Furthermore, relative to the formation of the unmodified reference duplexes, the formation of modified duplexes is accompanied by a higher uptake of counterions and a lower uptake of water molecules.  相似文献   

11.
Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics, and design of LNA oligonucleotides. The last part evaluates LNA as a diagnostic tool in genotyping.  相似文献   

12.
Triplex forming oligonucleotides (TFOs) are the most commonly used approach for site-specific targeting of double stranded DNA (dsDNA). Important parameters describing triplex formation include equilibrium binding constants (K(eq)) and association/dissociation rate constants (k(on) and k(off)). The 'fluorescent intercalator displacement replacement' (FIDR) assay is introduced herein as an operationally simple approach toward determination of these parameters for triplexes involving TC-motif TFOs. Briefly described, relative rate constants are determined from fluorescence intensity changes upon: (i) TFO-mediated displacement of pre-intercalated and fluorescent ethidium from dsDNA targets (triplex association) and (ii) Watson-Crick complement-mediated displacement of the TFO and replacement with ethidium (triplex dissociation). The assay is used to characterize triplexes between purine-rich dsDNA targets and TC-motif TFOs modified with six different locked nucleic acid (LNA) monomers, i.e. conventional and C5-alkynyl-functionalized LNA and α-L-LNA pyrimidine monomers. All of the studied monomers increase triplex stability by decreasing the triplex dissociation rate. LNA-modified TFOs form more stable triplexes than α-L-LNA-modified counterparts owing to slower triplex dissociation. Triplexes modified with C5-(3-aminopropyn-1-yl)-LNA-U monomer Z are particularly stable. The study demonstrates that three affinity-enhancing features can be combined into one high-affinity TFO monomer: conformational restriction of the sugar ring, expansion of the pyrimidine π-stacking surface and introduction of an exocyclic amine.  相似文献   

13.
Locked nucleic acid (LNA) is a nucleic acid analog with very high affinity to complementary RNA and a promising compound in the field of antisense research. The intracellular localization and quantitative uptake of oligonucleotides containing LNA were found to be equivalent to those of phosphorothioate oligonucleotides (PS AONs). The antisense efficiency of LNA-containing oligonucleotides was systematically compared with standard PS AONs targeting expression of two endogenous proteins in the human breast cancer cell line MCF-7, namely, the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and the estrogen receptor alpha (ERalpha). For downregulation of both target proteins, the most efficient design was achieved with oligonucleotides containing LNA monomers in the extremities and a central gap of PS-linked DNA monomers, so called LNA gapmers. Such LNA gapmers caused more potent downregulation of the targeted proteins than PS AONs, whereas fully modified LNA AONs or LNA mixmers (LNA nucleotides interspersed) were inactive.  相似文献   

14.
Synthesis of chimeric 9-mer oligonucleotides containing methylphosphonate-linkages and locked nucleic acid (LNA) monomers, their binding affinity towards complementary DNA and RNA, and their 3′-exonucleolytic stability are described. The obtained methylphosphonate-DNA/LNA chimeric oligonucleotides display similarly high RNA affinity and RNA selectivity as a corresponding 9-mer DNA/LNA chimeric oligonucleotide, but much higher resistance towards 3′-exonucleolytic degradation.  相似文献   

15.
We previously reported the Bcl-2/Bcl-xL-bispecific activity of the 2'-O-(2-methoxy)ethyl (2'-MOE)-modified gapmer antisense oligonucleotide 4625. This oligonucleotide has 100% complementarity to Bcl-2 and three mismatches to Bcl-xL. In the present study, the isosequential locked nucleic acid (LNA)-modified oligonucleotide 5005 was generated, and its ability to further improve the downregulation of the two antiapoptotic targets in tumor cells was examined. We demonstrate that compared with 4625, 5005 more effectively decreased the expression of the mismatching Bcl-xL target gene in MDA-MB-231 breast and H125 lung cancer cells. In both cell lines, antisense activity caused decreased cell viability by induction of apoptosis. Moreover, in combination with various anticancer agents, 5005 reduced tumor cell viability more effectively than 4625. We describe for the first time the functional comparison of isosequential Bcl-2/Bcl-xL-bispecific 2'-MOE and LNA-modified antisense oligonucleotides and report that the LNA analog more effectively downregulated the two apoptosis inhibitors overexpressed in human tumors. Our data underscore the ability of LNA modifications to enhance the efficacy and favorably modulate the target specificity of antisense oligonucleotides.  相似文献   

16.
Kaur H  Scaria V  Maiti S 《Biochemistry》2010,49(44):9449-9456
This study highlights the effect of incorporation of locked nucleic acid (LNA) on improving the functional efficacy of DNAzymes against microRNAs (antagomirzymes). DNAzymes were designed against two different sites of miR-27a, which were encompassed both within the precursor and mature form of miRNA. The cleavage and functional activities of these DNAzymes have been compared to those of LNA-modified counterparts, containing LNA modification in each of the substrate binding arms. Preliminary examination based on in vitro cleavage demonstrated LNAzyme to be much more effective in the ensuing cleavage of target miRNA under both single- and multiple-turnover conditions. Evaluation of kinetic parameters indicated almost 5-fold higher cleavage efficiency, kobs, for LNAzymes than for DNAzymes, leading to more efficient cleavage of the substrate. We attribute this enhancement in cleavage efficiency to the LNA-mediated improvement in the hybridization of the antagomirzyme·target complex. Functional validation of the relative activities was accomplished through the luciferase reporter assay and quantitative real-time polymerase chain reaction (qRT-PCR). Both the unmodified and LNA-modified antagomirzymes were very active in ensuing efficient miRNA knockdown; however, compared to the DNAzymes, the LNAzymes were almost 25% more active. A direct quantitative estimate of miRNA cleavage, conducted using qRT-PCR, further substantiated the data by indicating that LNAzyme effectively downregulated the levels of mature miRNA (up to 50%) versus the corresponding DNAzymes. Our data thus provide formative evidence of the successful employment of LNA-based antagomirzymes against miRNA.  相似文献   

17.
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2’-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.  相似文献   

18.
McTigue PM  Peterson RJ  Kahn JD 《Biochemistry》2004,43(18):5388-5405
The design of modified nucleic acid probes, primers, and therapeutics is improved by considering their thermodynamics. Locked nucleic acid (LNA) is one of the most useful modified backbones, with incorporation of a single LNA providing a substantial increase in duplex stability. In this work, the hybridization DeltaH(o), DeltaS(o), and melting temperature (T(M)) were measured from absorbance melting curves for 100 duplex oligonucleotides with single internal LNA nucleotides on one strand, and the results provided DeltaDeltaH(o), DeltaDeltaS(o), DeltaDelta, and DeltaT(M) relative to reference DNA oligonucleotides. LNA pyrimidines contribute more stability than purines, especially A(L), but there is substantial context dependence for each LNA base. Both the 5' and 3' neighbors must be considered in predicting the effect of an LNA incorporation, with purine neighbors providing more stability. Enthalpy-entropy compensation in DeltaDeltaH(o) and DeltaDeltaS(o) is observed across the set of sequences, suggesting that LNA can stabilize the duplex by either preorganization or improved stacking, but not both simultaneously. Singular value decomposition analysis provides predictive sequence-dependent rules for hybridization of singly LNA-substituted DNA oligonucleotides to their all-DNA complements. The results are provided as sets of DeltaDeltaH(o), DeltaDeltaS(o), and DeltaDelta parameters for all 32 of the possible nearest neighbors for LNA+DNA:DNA hybridization (5' MX(L) and 5' X(L)N, where M, N, and X = A, C, G, or T and X(L) represents LNA). The parameters are applicable within the standard thermodynamic prediction algorithms. They provide T(M) estimates accurate to within 2 degrees C for LNA-containing oligonucleotides, which is significantly better accuracy than previously available.  相似文献   

19.
Synthesis of an oligonucleotide containing one methylphosphonate locked nucleic acid (LNA) thymine monomer using the phosphoramidite approach is described. The binding affinity of this 9-mer methylphosphonate LNA towards complementary DNA and RNA oligonucleotides was increased compared to the reference DNA, but decreased compared to the reference LNA. In the 9-mer sequence context studied, introduction of a single methylphosphonate LNA monomer, contrary to a single LNA monomer, efficiently inhibits 3'-exonucleolytic degradation.  相似文献   

20.
Triple helix-forming oligonucleotides (TFOs) have been demonstrated to be capable of interfering with gene expression and modifying genomic DNA in a sequence-specific manner. Partial incorporation of 2'-O,4'-C-methylene linked locked nucleic acid (LNA) residues in TFOs has been shown to enhance significantly triple helix formation, whereas the full-length LNA TFO failed to form a stable triplex. This work is aimed at understanding the triple helix-forming properties of LNA-containing TFOs and at optimally designing their sequences. Both DNA thermal melting, gel retardation, and restriction enzyme experiments as well as modeling studies by molecular mechanics were carried out to investigate the base composition/sequence and pH-dependence effects of LNA-containing TFOs, as well as their structural features underlying triple helix formation. Alternating LNA substitution every 2-3 nucleotides in TFOs is mandatory, whereas the use of thymine LNA residues should be favored under neutral pH conditions. A rule for designing optimal LNA-containing TFOs is proposed. In addition, alternative LNA and 2'-O-methyl residues in TFOs do not significantly improve triple helix formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号