首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
目的观察ROCK特异性抑制剂Y27632对缺氧损伤(Oxygen-glucose deprivation,OGD)后少突胶质前体细胞分化的影响。方法培养SD大鼠大脑皮层少突胶质前体细胞,实验分为对照组、对照+Y27632组、OGD组、OGD+Y27632组四组;对细胞进行OGD处理2h,取4d后时间点,进行免疫荧光组化染色和Western blot实验,检测细胞A2B5、NG2、O4及MBP蛋白表达情况。结果与对照组相比,OGD组表达少突胶质细胞特异性蛋白MBP量明显增多(P0.01);OGD+Y27632组比单纯OGD组表达少突胶质细胞特异性蛋白MBP的量显著增加(P0.01)。结论 OGD损伤可促进OPCs的分化,Y27632特异性抑制ROCK可以进一步促进OGD损伤后OPCs的分化,提示ROCK信号通路在缺氧诱导OPCs分化的过程中有重要的调控作用。  相似文献   

2.
脊髓损伤(spinal cord injury,SCI)是一种严重危害人类生命健康的疾病,其发病率呈现逐年上升的趋势,并且治疗较为困难。研究发现脊髓损伤后少突胶质细胞大量死亡,引发脱髓鞘病变,这可能是其难以治疗的原因之一。少突胶质前体细胞(OPCs)为少突胶质细胞的祖细胞,后者是中枢神经系统的成髓鞘细胞。OPCs来源于胚胎发育早期神经管腹侧神经上皮细胞,随着神经管的发育,OPCs逐渐增殖、迁移并分化为成熟OL,参与中枢神经系统轴突髓鞘的形成。随着对OPCs的不断深入研究,发现OPCs移植对SCI有较好的疗效,这可能为SCI患者开辟一条新的治疗途径。本文就OPCs治疗SCI的动物实验研究结果做一综述。  相似文献   

3.
于钰  索伦  吴强 《动物学研究》2012,33(4):362-366
该文通过免疫组化及蛋白免疫印迹的方法分别对Pcdhα基因敲除和对照组小鼠的中枢神经系统内的髓鞘碱性蛋白表达以及少突胶质细胞的发育进行了测定。结果表明:1)Pcdhα基因缺失小鼠中枢神经系统中的髓鞘碱性蛋白较对照组小鼠明显减少;2)Pcdhα基因敲除可导致少突胶质细胞发育异常:在小脑中,处于成熟期的少突胶质细胞减少,而处于前体细胞阶段的少突胶质细胞增多。上述结果提示Pcdhα可以通过调控少突胶质细胞的成熟过程进而影响髓鞘的形成。  相似文献   

4.
胶质细胞生长因子的研究进展   总被引:4,自引:0,他引:4  
Xue YJ  Dong Y  Jang JY 《生理科学进展》2003,34(2):159-161
胶质细胞生长因子(glial growth factor,GGF)是neuregulin基因的产物。GGF与erbB受体的异二聚体或同二聚体结合,催化多肽链中的酪氨酸磷酸化,激活下游信号分子而发挥其生理作用。GGF及其受体在发育及成熟神经系统中广泛分布。GGF限定神经嵴细胞,使其向雪旺氏细胞分化,并在雷旺氏细胞发育过程中发挥重要作用。GGF能够刺激少突胶质细胞前体细胞、少突胶质细胞和星形胶质细胞增殖,抑制少突胶质细胞前体细胞分化成少突胶质细胞,抑制O-2A细胞分化成星形胶质细胞。GGF能够促进神经元沿着放射状的胶质细胞迁移,促进培养的视网膜神经元存活和突触生长。  相似文献   

5.
胶质细胞是脑内数量最多的神经细胞,包括星形胶质细胞、少突胶质前体细胞、NG2胶质细胞等多种类型,具有维持神经系统内环境稳态、支持和营养神经元、调控神经信号传导等多种重要功能。近年来,随着研究的深入,越来越多的证据表明某些特定的胶质细胞在一定条件下表现出干细胞的特性,发挥干细胞的功能。例如,在病理损伤条件下,星形胶质细胞和少突胶质前体细胞均会被活化而出现增殖、分化,体外分离培养可自我更新形成神经球。这些活化的星形胶质细胞和少突胶质前体细胞形成的神经球能够被诱导分化为星形胶质细胞、少突胶质细胞和神经元。此外,通过强制性表达外源基因能将星形胶质细胞和NG2胶质细胞转分化为神经元,这可能也是其干细胞特性的一种体现。本文在已有研究的基础上,总结了放射状胶质细胞、少突胶质前体细胞、星形胶质细胞、NG2胶质细胞与其它类型胶质细胞的干细胞特性、干细胞特性形成的条件、它们可能产生的子代细胞以及涉及的分子信号调控通路。深入探讨胶质细胞的干细胞特性及生理功能,有利于促进其在神经系统损伤修复领域的临床应用。  相似文献   

6.
刘驰  肖岚 《生命科学》2011,(3):279-282
少突胶质细胞的发育分化是由遗传的和后生的机制共同参与调控的一系列动态过程,其中,对于后生调控机制的研究称为表观遗传学。既往对少突胶质细胞的研究主要集中在相关基因本身的特性研究。近年来,关于寻址组蛋白修饰的研究使我们对少突胶质细胞发育和衰老过程中基因表达的后生调控有了新的认识。这些理论将有助于我们更好地理解脱髓鞘及衰老后髓鞘修复障碍的原因和防治途径。  相似文献   

7.
多发性硬化症(multiple sclerosis,MS)是一类自身免疫障碍导致的中枢神经系统脱髓鞘疾病。抑制免疫异常导致的炎症反应,以及促进髓鞘形成细胞——少突胶质细胞的成熟分化是防治MS的重要治疗策略,这有赖于对相关调控机制的深入了解。近年来的研究发现,个体除受到先天遗传因素影响外,DNA甲基化、组蛋白修饰、微小RNA(miRNA)以及染色质重塑等表观遗传学机制很有可能也参与了MS疾病免疫调节,炎症反应以及少突胶质细胞的分化调节。本文就相关研究进展进行综述,以期为MS的病理生理学机制的认识提供一定的参考资料。  相似文献   

8.
经典的Wnt/β-catenin信号通路参与调控机体的多种生物学功能,包括干细胞自我更新,细胞的增殖、分化、凋亡以及胚胎早期发育和组织再生等,与癌症发生发展紧密相关.此外,该信号通路在胸腺T细胞的发育和分化过程中发挥重要作用,影响抗肿瘤免疫效应的多个环节.异常激活的Wnt/β-catenin信号通路可诱导恶性肿瘤的形成...  相似文献   

9.
DNA甲基化是最早被发现的表观遗传修饰之一。近年来,大量的研究显示DNA甲基化在中枢神经系统(CNS)发育中发挥了重要作用。不同种类的DNA甲基转移酶(Dnmt)和DNA甲基结合蛋白(MBD)在CNS发育的不同阶段发挥不同的作用。DNA甲基化促进神经干细胞向神经元方向分化,抑制其向胶质细胞分化。Dnmt和MBD主要在神经元中表达,而在胶质细胞不表达或表达较少。DNA甲基化调节神经发生和突触的形成,参与学习记忆。星型胶质细胞的标志物GFAP去甲基化促进早期神经上皮分化为星型胶质细胞。少突胶质细胞相关基因MAG和Sox10等也受甲基化的调节。本文主要从以上方面综述了DNA甲基化在中枢神经系统发育中的作用。  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号