首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
The phylogenetic position of Cetacea (whales, dolphins and porpoises) is an important exemplar problem for combined data parsimony analyses because the clade is ancient and includes many well‐known and relatively complete fossil species. We combined data for 71 terminal taxa (43 extinct/28 extant) to test where Cetacea fits within Cetartiodactyla, and where various fossil hoofed mammals (e.g., ?entelodonts, “?anthracotheriids” and ?mesonychians) are positioned. We scored 635 phenotypic characters (osteology, dentition, soft tissue, behavior), approximately three times the number of characters in the last major analysis of this clade, and combined these with > 40 000 molecular characters, including new data from 10 genes. The analysis supported a topology consistent with the majority of recently published molecular studies. Cetacea was the extant sister taxon of Hippopotamidae, followed successively by Ruminantia, Suina and Camelidae. Several extinct taxa were phylogenetically unstable, upsetting resolution of the strict consensus and limiting branch support, but the positions of several key fossils were consistently resolved. The wholly extinct ?Mesonychia was more closely related to Cetacea than was any “artiodactylan.”“?Anthracotheriids” were paraphyletic, and, with the exception of one species, were more closely related to Hippopotamidae than to any other living taxon. The total evidence analysis overturned a highly nested position for Moschus supported by molecular data alone. The character partition that could be scored for the fossil taxa (osteological and dental characters) included more informative characters than most molecular partitions in our analysis, and had the fewest missing data. The osteological–dental data alone, however, did not support inclusion of cetaceans within crown “Artiodactyla.” Recently discovered ankle bones from fossil whales reinforced the monophyly of Cetartiodactyla but provided no particular evidence of derived similarities between hippopotamids and fossil cetaceans that were not shared with other “artiodactylans”. © The Willi Hennig Society 2007.  相似文献   

2.
Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead‐up to extant taxa; they represent now‐extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC‐based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant‐only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep‐time organismal evolution in the absence of deep‐time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies.  相似文献   

3.
Modern humans represent the only surviving species of an otherwise extinct clade of primates, the hominins. As the closest living relatives to extinct hominins, extant primates are an important source of comparative information for the reconstruction of the diets of extinct hominins. Methods such as comparative and functional morphology, finite element analysis, dental wear, dental topographic analysis, and stable isotope biogeochemistry must be validated and tested within extant populations before they can be applied to extinct taxa. Here we review how these methods have and might be used to reconstruct the diet of a particular extinct hominin, Paranthropus boisei, which has no extant analogue for its highly derived masticatory morphology. Our review emphasizes the potential and limitations of using extant primates as models for the reconstruction of extinct hominin diets. We encourage paleoanthropologists and those who study the feeding behaviors of extant primates to work together to investigate and validate methods for interpreting the diets of all extinct primates, including hominins.  相似文献   

4.
Fossil tip‐dating allows for the inclusion of morphological data in divergence time estimates based on both extant and extinct taxa. Neoselachii have a cartilaginous skeleton, which is less prone to fossilization compared to skeletons of Osteichthyans. Therefore, the majority of the neoselachian fossil record is comprised of single teeth, which fossilize more easily. Neoselachian teeth can be found in large numbers as they are continuously replaced. Tooth morphologies are of major importance on multiple taxonomic levels for identification of shark and ray taxa. Here, we review dental morphological characters of squalomorph sharks and test these for their phylogenetic signal. Subsequently, we combine DNA sequence data (concatenated exon sequences) with dental morphological characters from 85 fossil and extant taxa to simultaneously infer the phylogeny and re‐estimate divergence times using information of 61 fossil tip‐dates as well as eight node age calibrations of squalomorph sharks. Our findings show that the phylogenetic placement of fossil taxa is mostly in accordance with their previous taxonomic allocation. An exception is the phylogenetic placement of the extinct genus ?Protospinax , which remains unclear. We conclude that the high number of fossil taxa as well as the comprehensive DNA sequence data for extant taxa may compensate for the limited number of morphological characters identifiable on teeth, serving as a backbone for reliably estimating the phylogeny of both extinct and extant taxa. In general, tip‐dating mostly estimates older node ages compared to previous studies based on calibrated molecular clocks.  相似文献   

5.
The properties of cladistic data sets from small monophyletic groups (6–12 species) are investigated using computer simulations of macroevolution. Two evolutionary models are simulated: gradualism and the punctuated-equilibrium hypothesis. Under the conditions of our simulations these two models of evolution make consistently different predictions about the distribution of autapomorphies among species. When strict stasis is enforced, the punctuated-equilibrium hypothesis predicts that the most expected number of autapomorphies per species will be zero, no matter how many characters are used in the analysis. As the number of characters used in the analysis increases, the distribution of the number of autapomorphies per species becomes bimodal. Under gradualism, the distribution of autapomorphies remains unimodal under all conditions, but the number of species without autapomorphies can fall to zero. A survey of real cladograms of extant monophyletic groups from a wide range of taxa indicates that the predictions of the punctuated-equilibrium hypothesis about autapomorphies do not hold. This constitutes strong evidence against the punctuated-equilibrium hypothesis.  相似文献   

6.
Phylogenetic relationships within the bee family Megachilidae are poorly understood. The monophyly of the subfamily Fideliinae is questionable, the relationships among the tribes and subtribes in the subfamily Megachilinae are unknown, and some extant genera cannot be placed with certainty at the tribal level. Using a cladistic analysis of adult external morphological characters, we explore the relationships of the eight tribes and two subtribes currently recognised in Megachilidae. Our dataset included 80% of the extant generic‐level diversity, representatives of all fossil taxa, and was analysed using parsimony. We employed 200 characters and selected 7 outgroups and 72 ingroup species of 60 genera, plus 7 species of 4 extinct genera from Baltic amber. Our analysis shows that Fideliinae and the tribes Anthidiini and Osmiini of Megachilinae are paraphyletic; it supports the monophyly of Megachilinae, including the extinct taxa, and the sister group relationship of Lithurgini to the remaining megachilines. The Sub‐Saharan genus Aspidosmia, a rare group with a mixture of osmiine and anthidiine features, is herein removed from Anthidiini and placed in its own tribe, Aspidosmiini, new tribe . Protolithurgini is the sister of Lithurgini, both placed herein in the subfamily Lithurginae; the other extinct taxa, Glyptapina and Ctenoplectrellina, are more basally related among Megachilinae than Osmiini, near Aspidosmia, and are herein treated at the tribal level. Noteriades, a genus presently in the Osmiini, is herein transferred to the Megachilini. Thus, we recognise four subfamilies (Fideliinae, Pararhophitinae, Lithurginae and Megachilinae) and nine tribes in Megachilidae. We briefly discuss the evolutionary history and biogeography of the family, present alternative classifications, and provide a revised key to the extant tribes of Megachilinae.  相似文献   

7.
A recent molecular phylogeny of the mammalian order Carnivora implied large body size as the ancestral condition for the caniform subclade Arctoidea using the distribution of species mean body sizes among living taxa. "Extant taxa-only" approaches such as these discount character state observations for fossil members of living clades and completely ignore data from extinct lineages. To more rigorously reconstruct body sizes of ancestral forms within the Caniformia, body size and first appearance data were collected for 149 extant and 367 extinct taxa. Body sizes were reconstructed for four ancestral nodes using weighted squared-change parsimony on log-transformed body mass data. Reconstructions based on extant taxa alone favored large body sizes (on the order of 10 to 50 kg) for the last common ancestors of both the Caniformia and Arctoidea. In contrast, reconstructions incorporating fossil data support small body sizes (< 5 kg) for the ancestors of those clades. When the temporal information associated with fossil data was discarded, body size reconstructions became ambiguous, demonstrating that incorporating both character state and temporal information from fossil taxa unambiguously supports a small ancestral body size, thereby falsifying hypotheses derived from extant taxa alone. Body size reconstructions for Caniformia, Arctoidea, and Musteloidea were not sensitive to potential errors introduced by uncertainty in the position of extinct lineages relative to the molecular topology, or to missing body size data for extinct members of an entire major clade (the aquatic Pinnipedia). Incorporating character state observations and temporal information from the fossil record into hypothesis testing has a significant impact on the ability to reconstruct ancestral characters and constrains the range of potential hypotheses of character evolution. Fossil data here provide the evidence to reliably document trends of both increasing and decreasing body size in several caniform clades. More generally, including fossils in such analyses incorporates evidence of directional trends, thereby yielding more reliable ancestral character state reconstructions.  相似文献   

8.
Variable characters are ubiquitous in hominoid systematics and present a number of unique problems for phylogenetic analyses that include extinct taxa. As yet, however, few studies have quantified ranges of variation in complex morphometric characters within extant taxa and then used those data to assess the consistency with which discrete character states can be applied to poorly represented fossil species. In this study, ranges of intrageneric morphometric variation in the shape of the hominoid orbital aperture are estimated using exact randomization of average pairwise taxonomic distances (ATDs) derived from size-adjusted centroid, height-width, and elliptic Fourier (EF) variables. Using both centroid and height-width variables, 19 of the 21 possible ATDs between individuals representing seven extinct catarrhine taxa (Aegyptopithecus, Afropithecus, Ankarapithecus, Ouranopithecus, Paranthropus, Sivapithecus and Turkanapithecus) can be observed within a single extant hominoid subspecies, although generally with low probabilities. A resampling study is employed as a means for gauging the effect that this intrataxonomic variation may have on the consistency with which discrete orbital shape character states can be delimited given the small sample sizes available for most Miocene catarrhine taxa preserving this feature (i.e., n=1). For each type of morphometric variable, 100 cluster (UPGMA) analyses of pairwise ATDs are performed in which a single individual is randomly selected from each hominoid genus and analyzed alongside known extinct taxa; consensus trees are computed in order to obtain the frequencies with which different shape clusters appeared in each of the three analyses. The two major clusters appearing most frequently in all three consensus trees are found in only 57% (centroid variables), 49% (height-width variables), and 36% (EF variables) of these trees. If ranges of variation within represented extinct taxa could also be estimated, these frequencies would certainly be far lower. Hominoids clearly exhibit considerable intrageneric, intraspecific, and even intrasubspecific variation in orbit shape, and substantial morphometric overlap exists between taxa; consequently, discrete character states delimiting these patterns of continuous variation are likely to be highly unreliable in phylogenetic analyses of living and extinct species, particularly as the number of terminal taxa increases. Morphological phylogenetic studies of extant catarrhines that assess the effect of different methods (e.g., use of objective a priori weighting or frequency coding of variable characters, inclusion vs. exclusion of variable characters, use of specific vs. supraspecific terminal taxa) on phylogenetic accuracy may help to improve the techniques that systematists employ to make phylogenetic inferences about extinct taxa.  相似文献   

9.
Coleoid cephalopod phylogeny is well studied via both molecular and morphological data, yet although some agreement has been reached (e.g. that extant Decapodiformes and Octopoda are monophyletic) many details remain poorly resolved. Fossil coleoids, for which much data exists, have hitherto not been incorporated into analyses. Their inclusion is highly desirable for the support of neontological phylogenies, to better reconstruct character‐state histories, and to investigate the placement of the fossil groups themselves. In this study we present and analyse a morphological data matrix including both extinct and extant taxa. Homology assumptions in our data are discussed. Our results are presented both with and without the constraint of a monophyletic Decapodiformes imposed. When analysed with this constraint our results are strikingly congruent with those from molecular phylogeny, for instance placing Idiosepius in a basal position within Decapodiformes, and recovering Oegopsida and Bathyteuthoidea (although as grades). Our results support an Octopodiformes clade (“vampire squid” Vampyroteuthis as sister to Octopoda) and an octopodiform interpretation for most fossil coleoids. They suggest the fossil sister taxon to the octopods to be Plesioteuthididae. Most fossil higher taxa are supported, although many genera, especially within suborder Teudopseina, appear para‐ or polyphyletic.  相似文献   

10.
We provide the first predictions of bite force (BS) in a wide sample of living and fossil mammalian predators. To compare between taxa, we calculated an estimated bite force quotient (BFQ) as the residual of BS regressed on body mass. Estimated BS adjusted for body mass was higher for marsupials than placentals and the Tasmanian devil (Sarcophilus harrisii) had the highest relative BS among extant taxa. The highest overall BS was in two extinct marsupial lions. BFQ in hyaenas were similar to those of related, non-osteophagous taxa challenging the common assumption that osteophagy necessitates extreme jaw muscle forces. High BFQ in living carnivores was associated with greater maximal prey size and hypercarnivory. For fossil taxa anatomically similar to living relatives, BFQ can be directly compared, and high values in the dire wolf (Canis dirus) and thylacine (Thylacinus cynocephalus) suggest that they took relatively large prey. Direct inference may not be appropriate where morphologies depart widely from biomechanical models evident in living predators and must be considered together with evidence from other morphological indicators. Relatively low BFQ values in two extinct carnivores with morphologies not represented among extant species, the sabrecat, Smilodon fatalis, and marsupial sabretooth, Thylacosmilus atrox, support arguments that their killing techniques also differed from extant species and are consistent with 'canine-shear bite' and 'stabbing' models, respectively. Extremely high BFQ in the marsupial lion, Thylacoleo carnifex, indicates that it filled a large-prey hunting niche.  相似文献   

11.
CHARACTER DIAGNOSIS, FOSSILS AND THE ORIGIN OF TETRAPODS   总被引:1,自引:0,他引:1  
I. The traditional view of the origin of tetrapod vertebrates is that they are descendants of fossil osteolepiform fish, of which Eusthenopteron is best known. In recent years both that conclusion and the methodology by which it has been reached have been challenged by practitioners of cladistic analysis. Particularly a recent review by Rosen et al. (1981) claims that Dipnoi (lungfish) are the sister-group of the Tetrapoda, that Osteolepiformes is a non-taxon and that Eusthenopteron is more distant from tetrapods than are Dipnoi, coelacanths and probably the fossil Porolepiformes. We attempt to refute all these concludions by use of the same cladistic technique. 2. We accept that all the above-mentioned groups, together with some less well-known taxa, can be united as Sarcopterygii by means of shared derived (apomorph) characters. We also agree that Porolepiformes and Actinistia (coelacanths) can be characterized as valid taxa. The primitive and enigmatic fossil fish Powichthys is accepted as representing the plesiomorph sister-group of true porolepiforms. 3. Only two apomorph features, the course of the jaw adductor muscles and the position of incurrent and excurrent nostrils, appear to unite all the fish, living and fossil, currently regarded as Dipnoi. The characteristic tooth plates and the presence of petrodentine both exclude important primitive fossil forms. 4. Contrary to the opinion of Rosen et al., Osteolepiformes can be characterized — by the arrangement of bones forming the cheek plate, the presence of basal scutes to the fins and by the unjointed radials of the median fins. However, if these are true autapomorphies they exclude any osteolepiform from direct tetrapod ancestry. 5. Tetrapoda is a monophyletic group characterized by ten or more autapomorphies, including the bones of the cheek plate, a stapes and fenestra ovalis, and a series of characters of the appendicular skeleton. 6. Tetrapods have a true choana (internal nostril). We accept that the posterior (excurrent) nostril of Dipnoi is the homologue of the tetrapod choana. However, we assert that the posterior nostril of all bony fish is the homologue of the choana. This assertion would be refuted if any fish showed separate posterior nostril and choana. We reject the claim that this ‘three nostril condition’ occurred in porolepiforms and osteolepiforms. The evidence for a choana in porolepiforms is inadequate. Osteolepiforms had a true choana, characterized as in tetrapods by its relationship to the bones of the palate, but no third nostril. Dipnoans are not choanate. 7. Following cladistic practice, the relationship of the extant taxa is established first. Dipnoi are thus shown to be the living sister-group of tetrapods, but only on ‘soft anatomy’ characters unavailable in fossils. Coelacanths are the living sister-group of the taxon so formed. 8. The relationship of the fossil taxa to the extant sarcopterygians is then considered. The synapomorphy scheme proposed by Rosen et al. is discussed at length. Virtually all the characters they use to exclude close relationship of Eusthenopteron (and hence all osteolepiforms) to tetrapods, in favour of coelacanths and dipnoans, are invalid. 9. A series of synapomorphies uniting osteolepiforms and tetrapods is proposed, including a true choana (hence the taxon Choanata), the histology of the teeth, and a number of characters of the humerus. The recently discovered fossil Youngolepis, which lacks a choana, represents the sister-group of the Choanata, and is not uniquely close to Powichthys. The latter, as a porolepiform (s.l.) is a member of the sister-group to Choanata plus Youngolepis. 10. Our cladistic analysis suggests that all the extinct taxa considered are more closely related to tetrapods than are the Dipnoi. Moreover fossil evidence suggests that Dipnoi, considered as an extant taxon, may not even be the living sister-group of Tetrapoda. Early fossil dipnoans appear to have been marine fish without specific adaptations for air breathing. If so the apparent synapomorphies of Dipnoi and Tetrapoda may be homoplastic — the insistence on grouping extant taxa first would then have yielded an invalid inference.  相似文献   

12.
Comparative biologists often attempt to draw inferences about tempo and mode in evolution by comparing the fit of evolutionary models to phylogenetic comparative data consisting of a molecular phylogeny with branch lengths and trait measurements from extant taxa. These kinds of approaches ignore historical evidence for evolutionary pattern and process contained in the fossil record. In this article, we show through simulation that incorporation of fossil information dramatically improves our ability to distinguish among models of quantitative trait evolution using comparative data. We further suggest a novel Bayesian approach that allows fossil information to be integrated even when explicit phylogenetic hypotheses are lacking for extinct representatives of extant clades. By applying this approach to a comparative dataset comprising body sizes for caniform carnivorans, we show that incorporation of fossil information not only improves ancestral state estimates relative to those derived from extant taxa alone, but also results in preference of a model of evolution with trend toward large body size over alternative models such as Brownian motion or Ornstein–Uhlenbeck processes. Our approach highlights the importance of considering fossil information when making macroevolutionary inference, and provides a way to integrate the kind of sparse fossil information that is available to most evolutionary biologists.  相似文献   

13.
Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.  相似文献   

14.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

15.
Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible.  相似文献   

16.
Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships. The spicules occur as wholly carbonaceous films, and are interpreted as the remains of robust organic spicule sheaths. Comparable sheaths are restricted among living taxa to calcarean sponges, although the symmetries of the fossil spicules are characteristic of hexactinellid sponges. A similar extinct character combination has been documented in the Burgess Shale fossil Eiffelia. Interpreting the shared characters as homologous implies complex patterns of spicule evolution, but an alternative interpretation as convergent autapomorphies is more parsimonious. In light of the mutually exclusive distributions of these same characters among the crown groups, this result suggests that sponges exhibited an early episode of disparity expansion followed by comparatively constrained evolution, a pattern shared with many other metazoans but obscured by the conventional fossil record of sponges.  相似文献   

17.
In a cladistic analysis of Recent seed plants, Loconte and Stevenson (1990) obtained results that conflict with our 1986 analysis of both extant and fossil groups and argued that fossil data had led us to incorrect conclusions. To explore this result and the general influence of fossils on phylogeny reconstruction, we assembled new “Recent” and “Complete” (extant plus fossil) data sets incorporating new data, advances in treatment of characters, and those changes of Loconte and Stevenson that we consider valid. Our Recent analysis yields only one most parsimonious tree, that of Loconte and Stevenson, in which conifers are linked with Gnetales and angiosperms (anthophytes), rather than with Ginkgo, as in our earlier Recent and Complete analyses. However, the shortest trees derived from our Complete analysis show five arrangements of extant groups, including that of Loconte and Stevenson and our previous arrangements, suggesting that the result obtained from extant taxa alone may be misleading. This increased ambiguity occurs because features that appear to unite extant conifers and anthophytes are seen as convergences when fossil taxa are interpolated between them. All trees found in the Complete analysis lead to inferences on character evolution that conflict with those that would be drawn from Recent taxa alone (e.g., origin of anthophytes from plants with a “seed fern” morphology). These results imply that conclusions on many aspects of seed plant phylogeny are premature; new evidence, which is most likely to come from the fossil record, is needed to resolve the uncertainties.  相似文献   

18.
Endogenous retrovirus-like elements characterizable by a leucine tRNA primer (ERV-Ls) are reiterated genomic sequences known to be widespread in mammals, including humans. They may have arisen from an ancestral foamy virus-like element by successful germ line infection followed by copy number expansion. However, among mammals, only primates and rodents have thus far exhibited high copy number amplification and sequence diversification. Conventionally, empirical studies of proviral amplification and diversification have been limited to extant species, but taxa having good Quaternary fossil records could potentially be investigated using the techniques of "ancient" DNA research. To examine evolutionary parameters of ERV-Ls across both time and taxa, we characterized this proviral class in the extinct woolly mammoth (Mammuthus primigenius) and living elephants, as well as extant members of the larger clade to which they belong (Uranotheria, a group containing proboscideans, sirenians, hyraxes, and their extinct relatives). Ungulates and carnivores previously analyzed demonstrated low copy numbers of ERV-L sequences, and thus it was expected that uranotheres should as well. Here, we show that all uranothere taxa exhibit unexpectedly numerous and diverse ERV-L sequence complements, indicating active expansion within this group of lineages. Selection is the most parsimonious explanation for observed differences in ERV-L distribution and frequency, with relative success being reflected in the persistence of certain elements over a variety of sampled time depths (as can be observed by comparing sequences from fossil and extant elephantid samples).  相似文献   

19.
Understanding the processes that underlie biodiversity requires insight into the evolutionary history of the taxa involved. Accurate estimation of speciation, extinction, and diversification rates is a prerequisite for gaining this insight. Here, we develop a stochastic birth–death model of speciation and extinction that predicts the probability distribution of both extinct and extant numbers of species in a clade. We present two estimation methods based on this model given data on the number of extinct species (from the fossil record) and extant species (from diversity assessments): a multivariate method of moments approach and a maximum-likelihood approach. We show that, except for some special cases, the two estimation methods produce very similar estimates. This is convenient, because the usually preferred maximum-likelihood approach is much more computationally demanding, so the method of moments can serve as a proxy. Furthermore, we introduce a correction for possible bias that can arise by the mere fact that we will normally only consider extant clades. We find that in some cases the bias correction affects the estimates profoundly. Finally, we show how our model can be extended to incorporate incomplete preservation. Preservation rates can, however, not be reliably estimated on the basis of numbers of extant and extinct species alone.  相似文献   

20.
Paleontological investigations into morphological diversity, or disparity, are often confronted with large amounts of missing data. We illustrate how missing discrete data affect disparity using a novel simulation for removing data based on parameters from published datasets that contain both extinct and extant taxa. We develop an algorithm that assesses the distribution of missing characters in extinct taxa, and simulates data loss by applying that distribution to extant taxa. We term this technique “linkage.” We compare differences in disparity metrics and ordination spaces produced by linkage and random character removal. When we incorporated linkage among characters, disparity metrics declined and ordination spaces shrank at a slower rate with increasing missing data, indicating that correlations among characters govern the sensitivity of disparity analysis. We also present and test a new disparity method that uses the linkage algorithm to correct for the bias caused by missing data. We equalized proportions of missing data among time bins before calculating disparity, and found that estimates of disparity changed when missing data were taken into account. By removing the bias of missing data, we can gain new insights into the morphological evolution of organisms and highlight the detrimental effects of missing data on disparity analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号