首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Henkin  Z.  Seligman  N.G.  Kafkafi  U.  Prinz  D. 《Plant and Soil》1998,202(2):317-326
Dwarf-shrub communities of Sarcopoterium spinosum dominate large areas of the landscape on hilly, eastern Mediterranean rangelands. Colonisation of new areas depends on the establishment of seedlings that must compete for water with the ubiquitous annual herbaceous species during the spring-winter growing season and also survive the first hot, dry summer. The present study investigated the role of the herbaceous vegetation patches growing between S. spinosum shrubs on the depletion of soil water during the critical transition period between the cool, rainy season and the dry summer. Dense and sparse herbaceous vegetation stands were established in S. spinosum dwarf-shrub communities by differential use of fertiliser on two contrasting soil types – a terra rossa overlying hard limestone where seedling establishment is low and a pale rendzina overlying a soft chalk substrate where seedling establishment is high. Soil water in the main root zone of the herbaceous vegetation between the shrubs was monitored with protected gypsum block sensors permanently placed at two depths (10 and 33 cm). Soil water depletion during the transition from the wet to the dry season was significantly more rapid under dense vegetation only on the terra rossa soil where the herbaceous vegetation also matured more rapidly than on the rendzina soil. However, in both habitats and under both dense and sparse vegetation, soil water depletion during the transition period left very little available water in the rooting zone of the herbaceous vegetation to maintain shrub seedlings throughout the summer. It was concluded that the difference in shrub seedling establishment success in the two habitats mainly reflects the differences in accessibility of water below the rooting zone of the herbaceous vegetation growing on the two contrasting soil types.  相似文献   

2.
Abstract. This paper deals with the influence of edaphic conditions on the spatial structure of banded thickets or tiger bush (brousse tigrée). It is based on two sites in West Africa, with similar climatic conditions but located on contrasting substrates. The spatial structure was described with standardized characteristics including thicket spacing, thicket/inter‐thicket contrast, upslope/downslope asymmetry and species zonation throughout the vegetation band. Recruitment and senescence features of woody stands were emphasized in order to understand current dynamics. Data were collected on transects oriented perpendicular to the contours and so to the thickets as well. A standardized analytical procedure was applied to data from both sites to ensure consistent and thorough delineation of thickets. The overall periodicity of thickets, the woody flora and the dominant species Combretum micranthum were similar at the two sites. However, thicket spacing, thicket/inter‐thicket contrast and upslope/downslope floristic asymmetry of the thickets were higher in the less favourable site. Also seedlings were less abundant, with a greater dependence on pre‐existing thickets. Not all banded vegetation systems show sharp contrasts and are strongly asymmetric, since such characteristics are likely to be reinforced by adverse environmental conditions. As a consequence, current dynamics may be more diverse than expected. Quantified inter‐site comparisons can greatly help to classify African banded vegetation systems and to discuss potential dynamic outcomes.  相似文献   

3.
三峡山地不同类型植被和坡位对土壤水文功能的影响   总被引:4,自引:0,他引:4  
土壤层下渗和贮蓄水分的水文功能是森林保持水土、涵养水源的基础。以三峡山地大老岭林区为研究区,采集常绿林、落叶林和草地覆盖下不同坡位的原状土样,测定其饱和导水率和水分特征曲线,分析植被类型和坡位对土壤水分参数和库容的影响。结果表明:常绿林地的入渗性能最好,饱和导水率为7.80—322.81 cm/d,大于落叶林地(0.33—137.03 cm/d)和草地(0.84—115.80 cm/d);坡位间差异表现为上坡高于下坡。不同样地的饱和含水量差异较小,但毛管持水量和田间持水量差异明显,草地最大,为20.77%—50.39%;不同坡位比较表现为下坡高于上坡。不同样地土壤水库容量差异较大,由田间持水量得到的库容量占总库容量的百分比以草地最大(63.25%),其次是落叶林地,常绿林地最小;坡位上表现为下坡的田间持水库容大于上坡。饱和导水率与土壤总孔隙度、有机质含量呈显著正相关,与容重呈显著负相关;饱和含水量、毛管持水量、田间持水量均与土壤总孔隙度、有机质含量和粉粒含量呈显著正相关,与容重、砂粒含量呈显著负相关。综合以上,草地持水性能最强,利于保蓄水分,常绿林地最弱,更利于水分入渗,补给地下水,下坡位的持水性能强于上坡位。  相似文献   

4.
Vegetation of arid and semiarid environments has in general a patchy distribution. Our objective was to (a) determine several qualitative and quantitative analytical characteristics of vegetation patches in an arid zone of Patagonia, Argentina, and (b) investigate relationships between them. Annual precipitation in this area was 200 mm during 1999–2005. Eight transects involving ten patches each were studied within a 15 × 15 km area. Mean (±1 SE) values (n = 80) in the vegetation patches were 315 ± 25 and 207 ± 16 cm for the greatest and lowest patch diameter, respectively; 23 ± 2 cm for mound height; 113 ± 12 cm for maximum vegetation height; and 170 ± 18 cm and 58 ± 2% for distance to the next vegetation patch and vegetation patch cover within a transect, respectively. Correlations between greatest and lowest diameters, mound height, maximum plant height and distance to the closest vegetation patch were all significant (P < 0.01; n = 80). In all vegetation patches, the greatest and lowest frequencies were found for the grass Stipa spp. (71.2%) and the shrub Grindelia chiloensis (Cornel.) Cabrera (12.5%). Stipa spp. and the shrub Atriplex lampa (Moq.) D. Dietr. showed the highest simultaneous frequency (50%). A reasonable association among species (>45%) was found for Stipa spp., Atriplex lampa and the shrubs Larrea divaricata Cav., Lycium chilense Miers ex Bertero and Junellia ligustrina (Lag.) Moldenke. Larrea divaricata and Atriplex lampa contributed more than 84% of the total patch standing crop (5,777 ± 435 g). Average patch size and specific diversity were 5.93 ± 0.33 m2 and 1.31 ± 0.11, respectively. Aboveground standing crop of the two dominant shrubs decreased as plant species diversity increased (P < 0.05). Conservation of vegetation patches is crucial to prevent increased soil erosion and desertification in the study ecological system.  相似文献   

5.
Abstract. Seedling abundance at four microsites (open fynbos, beneath emergent fynbos shrubs, beneath thicket, and beneath forest) was determined at three coastal dune landscapes, located along a gradient of increasing summer rainfall and where fire-dependent fynbos was the predominant vegetation. At all sites thicket seedlings were most common beneath emergent fynbos shrubs and under thicket clumps; seedlings of forest species were most abundant at forest microsites although some individuals were recorded beneath thicket. Very few thicket seedlings were observed in open fynbos. Birds play a keystone role in facilitating establishment of the fleshy fruit-bearing thicket flora. Seedling abundance at microsites of different thicket and forest species was generally unrelated to fruit abundance. Germination success of most species was highest under shaded conditions; soil organic content had no effect on germination. Removal of pulp and birdingestion enhanced the germination, relative to untreated controls, of two out of three species tested. A simple Markov model predicted a gradual increase in cover of the thicket and forest component and a gradual decline in fynbos under a ‘normal’ (20-yr interval) fire regime simulated over 10 cycles. Although inter-fire seedling establishment under emergent fynbos shrubs is important in the initial colonisation of fynbos by obligate resprouting thicket shrubs, these species persist and expand by vegetative recruitment after and between fires, respectively. In the prolonged absence of fire, the endemic-rich and fire-dependent fynbos flora would be replaced by species-poor forest and thicket.  相似文献   

6.
Xeric succulent thicket in the Eastern Cape, South Africa has been used for farming goats since the early 1900s. This habitat is characterised by a dense cover of the succulent bush Portulacaria afra and by a warm, semi-arid climate with evenly distributed annual rainfall of 250–400 mm. Heavy browsing by goats results in the loss of P. afra and transforms the thicket to an open savanna dominated by annual grasses. Eight fence-line comparisons between thicket and savanna were used to investigate differences in soil quality associated with the vegetation change. Composite soil samples were taken to a depth of 10 cm from 1 ha plots on either side of the fence-line. Associated with the change from thicket to savanna, a significant decrease (paired t-test, P < 0.05) was found in total C (respective means of 5.6 vs. 3.0%), total N (0.33 vs. 0.24%), labile C (2.8 vs. 1.5%), CO2 flux (1.9 vs. 0.5 µmol m–2 s–1), soil respiration in the laboratory (144 vs. 79 ng C kg–1 s–1), (NH4)OAc-extractable Mg (55 vs. 28 mmolc kg–1), and laboratory infiltration rate (51 vs. 19 mm h–1). In the same direction there was a similarly significant increase in modulus of rupture (16 vs. 34 kPa), water-soluble Ca (2.3 vs. 3.4 mmolc kg–1) and pH (6.7 vs. 7.7). The soil C content of 5.6% in thicket is surprisingly high in this warm, semi-arid climate and suggests that the dense P. afra bush strongly regulates soil organic matter through microclimate, erosion control, litter quantity and perhaps chemistry. Savanna soils had a greater tendency to crust (as evident in a lower rate of laboratory infiltration and greater modulus of rupture) than thicket soils. This was attributed to their lower organic matter content, which probably reduced aggregate stability. Savannas are likely to be more prone to runoff and erosion not only because of sparser vegetation but also because of a decline in soil quality.  相似文献   

7.
The cycling of surface water, energy, nutrients, and carbon is different between semiarid grassland and shrubland ecosystems. Although differences are evident when grasslands are compared to shrublands, the processes that contribute to this transition are more challenging to document. We evaluate how surface redistribution of precipitation and plant responses to the resulting infiltration patterns could contribute to the changes that occur during the transition from grassland to shrubland. We measured soil water potential under grasses (Bouteloua eriopoda), shrubs (Larrea tridentata) and bare soil and changes in plant water relations and gas exchange following a 15 mm summer storm in the grassland–shrubland ecotone at the Sevilleta National Wildlife Refuge in central New Mexico USA. Following the storm, soil water potential (Ψs) increased to 30 cm depth beneath both grass and shrub canopies, with the greatest change observed in the top 15 cm of the soil. The increase in Ψs was greater beneath grass canopies than beneath shrub canopies. Ψs under bare soil increased only to 5 cm depth. The substantial redistribution of rainfall and different rooting depths of the vegetation resulted in high Ψs throughout most of the rooting volume of the grasses whereas soil moisture was unchanged throughout a large portion of the shrub rooting volume. Consistent with this pattern, predawn water potential (ΨPD) of grasses increased more than 5 MPa to greater than −1 MPa whereas ΨPD of shrubs increased to −2.5 MPa, a change of less than 2 MPa. Transpiration increased roughly linearly with ΨPD in both grasses and shrubs. In grasses, assimilation was strongly correlated with ΨPD whereas there was no relationship in shrubs where assimilation showed no significant response to the pulse of soil moisture following the storm. These data show that preferential redistribution of water to grass canopies enhances transpiration and assimilation by grasses following large summer storms. This process may inhibit shrubland expansion at the ecotone during periods without extreme drought.  相似文献   

8.
Abstract Intensive pastoralism with goats transforms semiarid thicket in the Eastern Cape, South Africa from a dense vegetation of tall shrubs to an open landscape dominated by ephemeral grasses and forbs. Approx. 800 000 ha of thicket (which prior to the introduction of goats had a closed canopy and a Portulacaria afra Jacq. component) have been transformed in this manner. Ecosystem C storage in intact thicket and loss of C due to transformation were quantified. Carbon storage in intact thicket was surprisingly high for a semiarid region, with an average of 76 t C ha?1 in living biomass and surface litter and 133 t C ha?1 in soils to a depth of 30 cm. Exceptional C accumulation in thicket may be a result of P. afra dominance. This succulent shrub switches between C3 and CAM photosynthesis, produces large quantities of leaf litter (approx. 450 g m?2 year?1) and shades the soil densely. Transformed thicket had approx. 35% less soil C to a depth of 10 cm and approx. 75% less biomass C than intact thicket. Restoration of transformed thicket landscapes could consequently recoup more than 80 t C ha?1.  相似文献   

9.
Previous studies have tested the “vernal dam” hypothesis of spring ephemeral herbs in hardwood forests. The desert annual is a component of the desert ecosystem that takes advantage of water resources and temperature conditions during the rainy season to rapidly complete its life cycle within several months. To understand the role desert annual/ephemeral plants play in nutrient flow, we studied vegetation cover, nitrogen content and litter production of annual plants and litter decomposition rate in plant communities dominated by four shrubs (Haloxlon ammodendron, Hedysarum scoparium, Calligonum mongolicum, and Nitraria tangutorum) and two dominant annuals (Agriophyllum squarrosum and Halogeton arachnoideus Moq) in Minqin, northwestern China. Results indicate that over half of the total vegetation cover was provided by annuals. Annuals also took up a large amount of nitrogen (0.46–3.78 g N m−2) along the oasis–desert ecotone. Litter production and nutrient content were higher in areas dominated by annual plants than in areas dominated by shrubs. Furthermore, the litter decomposition rate of the annuals was higher than that of the shrubs, except for the shrub H. ammodendron, although almost all of the litter’s carbon (C) and nitrogen (N) remained after 6 months of decomposition. Without the annuals, more nutrients and rainwater might be lost through leaching or dust transfer caused by the wind erosion. In addition, green twigs of the annuals are the food for some animals, we found some green twigs and litter from annuals left in front of gerbil and rabbit burrows, sometimes even blocking these burrows. Thus, desert summer annuals, like nutrient reservoirs and providers, take up nutrients during the rainy season, providing some animals and microbes with food, and finally release these nutrients after death. Bao-Ming Chen and Gen-Xuan Wang contributed equally to this work.  相似文献   

10.
Abstract Succulent thicket in the Eastern Cape of South Africa is one of many rangeland ecosystems in the world that displays evidence of unsustainable grazing pressure. Widespread transformation of succulent thicket has resulted in the replacement of the typical two‐phase perennial vegetation patches with a structurally simple field layer of ephemeral and weakly perennial grasses and forbs. We hypothesized that (i) transformation of succulent thicket leads to a switch from a spatially heterogeneous landscape to a homogenous and relatively infertile state; and (ii) that this loss of fertility is associated with a breakdown in the processes that conserve resources and promote water use efficiency. We tested these hypotheses at five fenceline contrast sites in Sundays River Thicket, an arid form of succulent thicket. We compared soil fertility (organic carbon, available nitrogen and phosphorus), texture, matric potential, and surface microtopography in the two main microhabitats on either side of the fencelines using a nested anova. Our results show that intact Sundays River thicket has a distinct spatial pattern of soil fertility where nutrients and organic carbon are concentrated under the patches of perennial shrubs, compared with under canopy trees. Transformation results in a significant homogenization of this pattern and an overall reduction in the fertility of the landscape. The proportion of the landscape surface that promotes infiltration due to a distinct litter layer decreases from 60% to 0.6%. Soil moisture retention (matric potential) also decreases with transformation. We interpret these patterns within the framework of semi‐arid landscape functionality.  相似文献   

11.
Vega  Ernesto  Montaña  Carlos 《Plant Ecology》2004,175(1):107-120
Plants face different environmental pressures in different patches of vegetation mosaics, so their demography cannot be completely understood if it is not studied in each patch-type. Banded patterns of vegetation surrounded by bare areas occur in semiarid landscapes. At one level, two phases of the mosaic are the banded vegetation-patches (vegetation arcs) and the bare areas, but at another level two phases can be distinguished inside the vegetation arc. One phase (frontal zone) is always in the upslope boundary of the arc, has only herbs and it has been suggested that it functions as a colonization area, while the other one (central zone) is at the middle of the arcs and has both shrubs and herbs. The demography of a tussock grass (Hilaria mutica) growing in the two phases of the vegetation arcs was studied under the hypothesis that it will show the demographic parameters of a ruderal species in the frontal zone and those of a more competitive species in the central zone. Temporal variability was assessed through annual, average, periodic and stochastic matrices. λ-values are higher in the frontal than in the central zone, and lower in dry years than in years with moderate precipitation. The influence of the demographic processes on λ-values shows spatial and temporal variation. In dry years, λ-values are more sensible to stasis (permanence in the same size class) and retrogression (transition to a smaller size class) in both zones, whereas in years of moderate precipitation the influence of fecundity and growth increases in the frontal zone and the influence of stasis and retrogression continue to be the most important in the central zone. Variations in the demographic parameters observed in the frontal zone are evidences of a life history plasticity finely tuned with environmental variation, and these results support the hypothesis that frontal zones function as colonization areas. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The drawdown zone of the Three Gorges Reservoir Region was assumed to be completely formed in 2009 and the water level would range from ~145 m in flood season (summer) to ~175 m during non-flood season (winter). The soil seed bank is an important propagule source for vegetation restoration. In order to evaluate the potential of the soil seed bank to revegetate the drawdown zone of this region, we examined the quantitative relationships between the germinable soil seed bank and the established vertical and horizontal vegetation patterns. A total of 45 soil samples at four sites was collected to examine seed bank density, species richness, and composition using the seedling-emergence method. Forty-five species (from 20 families) germinated from the soil seed bank, and the average seed density was 4578 m−2. The seed bank was dominated by annual plants, suggesting reestablishment of some above-ground species was plausible. However, most established woody plants and perennials were absent from the seed bank indicating a low probability of reestablishment for non-annuals through the seed bank. Thus, due to low species compositional similarity to extant vegetation and the dominance of annual plants, the soil seed bank had a low potential to restore pre-dam vegetation in the drawdown zone of the Three Gorges Reservoir Region, but its potential as a propagule source should be considered regarding the management of the drawdown zone for vegetation cover.  相似文献   

13.
Soil-stored seed banks of grassland, fynbos and thicket, all growing on calcareous dunes and each subject to different disturbance regimes, were examined. Seed banks were determined from counts of germinants from 50 soil cores from each type. Aboveground estimates of plant species cover in 10 1-m2 plots were used in determining vegetation/seed bank similarities. There was no evidence for seed bank densities to be markedly higher in the most frequently disturbed community (grassland -4273 seeds/m2) than the least disturbed community (thicket - 3417 seeds/m2). Highest similarity between seed bank and above-ground vegetation composition in terms of species and growth form/life-span classes was recorded for grassland (CC = 50%). Lowest similarity (CC = 13%) was found in the less frequently disturbed thicket where no seeds of climax trees were recorded in the seed bank. A fynbos community on a north-facing (warm, dry) slope had intermediate-sized seed banks (1683 seeds/m2) with intermediate vegetation/seed bank similarity (CC = 46%). However, on the south-facing slope, which has a large post-fire ephemeral herb component, seed banks were larger (4518 seeds/m2) but less similar to above-ground vegetation (CC = 39%o). Ordination (DCA) of vegetation data from the four communities was different from an ordination of their seed bank data. Fynbos shrub species were absent from seed banks of both grassland and thicket, even though secondary succession proceeds from grassland, through fynbos to thicket. Their seed banks appear less persistent than those of European heath or Californian chaparral shrubs.  相似文献   

14.
Riparian vegetation, an important mediator of land–water interactions, provides habitat for animals and other organisms; however, riparian vegetation zones have been altered by agricultural and urban development in Korea. This riparian vegetation survey was conducted to obtain information vital for the ecological restoration and management of the Korean Geum River ecosystem. At 100 study sites, along the Geum River, we recorded the vegetation of the Geum riparian zone. We then surveyed the riparian vegetation associations in the area and overlaid those areas corresponding to trees, shrubs, perennial herbs, annual herbs, exotic plants, cultivated lands, and damaged lands on a geographical map. We also reconstructed the cross-sectional landscape. The mean values of vegetation diversity, exotic plant area (%), annual plant area (%), and species richness were 6.47 ± 0.26, 5.44 ± 1.01, 11.98 ± 1.20, and 22.69 ± 0.93, respectively. The landscape elements of the herbaceous plants were more spread out, compared with those of the woody plants, and 23 sites were composed strictly of herbs. Our results indicate significant differences in vegetation structure among the study sites. For example, at some sites, exotic plants, cultivated lands, and damaged lands dominated the landscape comprising 25.7, 62, and 68.9%, respectively, of the area. The riparian landscape reference model suggested by these results may be applied to studies of other well-conserved riparian zones. We propose that the material pathways and transport of organisms from land to water at Geum River depend on the patchy distribution of these diverse landscape elements.  相似文献   

15.
Landsat TM and ETM+ satellite images from 2001 to 2011 were used to map the extent and change of the invasive shrubs common and glossy buckthorn (Frangula alnus and Rhamnus cathartica) at Irwin Prairie State Nature Preserve (IPSNP), and throughout Oak Openings, a 1,500 km2 region, located in NW Ohio, USA and SE Michigan near Lake Erie. In the Oak Openings, buckthorn directly threatens native biodiversity and habitat health of this globally rare ecosystem. Buckthorn that forms as dense shrub thicket in the understory is often obscured from satellite view by other canopy and is not spectrally dissimilar enough to be characterized using multispectral images. To address this, time series tasseled cap greenness images of land surface areas dominated by buckthorn thicket (which exhibit early leaf-out, late senescence) was used to identify areas covered by thicket with a heterogeneous background. A time series of vegetation index values was calculated from 49 Landsat images and combined with in-situ observations to define the land surface phenology of buckthorn thicket and other vegetation types. The phenological differences among land surfaces dominated by distinct vegetation types in the Oak Openings Region were used to map the extent of buckthorn thicket using a supervised classification method. Buckthorn thicket was identified in 0.43 % of the classified pixels (940 ha) in the 2007–2011 imagery and in 0.31 % (690 ha) of the 2001–2006 images. A Kappa test of the 2007–2011 classification yielded a value of 0.73 with 88 % overall accuracy of presence or absence of thicket based on 60 samples throughout the Oak Openings. The areal extent of buckthorn thicket increased by 39 % (255 ha) in the study area over the time period from 2001 to 2011.  相似文献   

16.
Arid land degradation diminishes the proportion of precipitation conducted to infiltration and increases the proportion lost to run‐off and evaporation. Consequently, we expect that the effects of annual precipitation on shrub growth vary with land degradation as a result of changes in soil available water. Chuquiraga avellanedae is the dominant shrub and the main indicator of land degradation in semiarid rangelands of north‐eastern Patagonia. We chose two communities with a different degree of land degradation: an herbaceous steppe with shrubs (HSS) and a degraded shrub steppe (SS). Vegetative growth of C. avellanedae was determined nondestructively using a double‐sampling approach. Soil water content was estimated for the two communities using a soil water balance model. Linear regressions were used to evaluate the relationships between shrub growth and (i) annual precipitation and (ii) mean available water during the period of high vegetative growth in the soil layer that each plant community concentrates their roots. In SS, with elevated clay content, there were more roots of C. avellanedae in the upper layers of soil while in HSS, with coarse‐textured soil, C. avellanedae had more roots in deeper layers. Vegetative growth of C. avellanedae, both in HSS and SS communities, was positively related to annual precipitation but, for a given precipitation, C. avellanedae presented higher vegetative growth in HSS than in SS. We also found a positive relationship between vegetative growth and soil available water, and this relationship did not differ between communities. SS presented lower water availability because of lower infiltration rates. Our results showed that, irrespective of the degree of land degradation, plants respond directly to water content of the soil layers where most roots are present at a specific window of time.  相似文献   

17.
The hydrophilic vegetation of the small Korovka River has been characterized in the urban and suburban zones of the city of Rybinsk (Yaroslavl oblast). The structure and state of the vegetation within the urban territory depends mainly on the anthropogenic load and hydrological factors. The main phytocoenoses of urban and suburban zones are hydrophilic and helophilic complexes, respectively. The level of overgrowth of these zones varies within the range of 30–70% and 5–20%, respectively. The following overgrowth patterns dominate in the urban zone: mosaic thicket, border, and underwater meadow. In the case of the suburban zone, the border and thicket patterns dominate.  相似文献   

18.
人工小叶锦鸡儿(Caragana microphylla)灌丛土壤水分动态研究   总被引:12,自引:0,他引:12  
采用由植被空间序列断时间系列的方法。分析了1984,1987,1995和1999年建立的人工小叶锦鸡儿固沙植被土壤水分的时空变化特征,结果表明,受沙地土壤机械组成的影响,沙地土壤组成以物理性沙粒为主,>0.01mm沙粒占97%以上,凋萎湿度为1.55%,田间持水量5.5%,大有效水为3.95%,随着固沙植被优势度的增加,小叶锦鸡儿灌丛下土壤含水量持续下降,1984年建立的植被区土壤含水量明显低于1999年建立的植被区;在年内土壤水分季节变化中,4个阶段植被区土壤水分状况在4-6月不断降低,到6月达到最低值,7-10月逐渐回升;对于建立较早的植被区(1984和1987年),土壤水分垂直变化表现出随着土层深度的增加,土壤含水量逐递减的趋势,特别是70cm下土层中,土壤含水下降明显,含水量低于凋萎湿度,由于对根际区域土壤水分的利用,加剧了固沙植被区深层土壤(70cm下)水分的亏缺,进而影响植被物种的组成,随着小叶锦鸡儿灌丛年龄的增加,浅根性植物所占比重增加。  相似文献   

19.
Patchy desert shrubs magnify the horizontal heterogeneities of carbon source and nutrient availability in an arid ecosystem, significantly affecting the abundance and activity of the soil microbial community. Since each shrub species develops special ecophysiological adaptations to the extreme harsh desert environments, previous studies elucidated that the effects of perennial shrubs on microbial diversity are unequal. The aim of the present study, conducted in the Negev Desert, Israel, was to illustrate the vertical changes of soil microbial community functionality in the root zone of perennial shrubs. Soil samples were collected from the 0–50 cm depth at 10-cm intervals under the canopy of Zygophyllum dumosum, Hammada scoparia, and from the open spaces between them, in the wet and dry seasons. Soil moisture and organic matter exhibited a significant (P < 0.001) plant and depth dependence. The mean basal respiration rates and microbial biomass in soils collected beneath perennial shrubs were relatively higher than the control during the wet season, however, a contrasting trend was observed at some soil depths during the dry season. Relatively high abundance and activity of aromatic and carboxylic acid utilizers were observed in the vicinity of perennial shrubs, and the values recorded during the dry season were generally higher than the corresponding values during the wet season. In addition, a “mirror effect” in vertical changes of the community-level physiological profile was observed between Z. dumosum and H. scoparia. This study demonstrated the stratification of the functional aspects in soils under the canopy of perennial shrubs, thus indicating that the scattered distribution of vegetation not only causes horizontal heterogeneities of the microbial community in an arid system, but also that the ecophysiological adaptations developed by xerophytes regulate the abundance and saprotrophic functionality of microorganisms in the root zone.  相似文献   

20.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号