首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model of insulin sensitive glucose transporter regulation is developed. Model structure is based on experimental evidence from adipocytes and myocytes. Model parameters correspond with known cellular processes. As an example, computer simulation results are compared with data from rat adipocytes. Cellular processes explicitly represented in the model include state-dependent glucose transporter synthesis and degradation rates, insulin sensitive glucose transporter translocation rates, and a glucose transporter endocytosis rate. Most of these processes are represented as first-order events. Using more complex representations of the model structure (e.g. higher order rate constants or saturable pathways) or alternative structures did not result in qualitatively better results. The model is able to accurately simulate the insulin sensitive, insulin concentration dependent, reversible translocation of glucose transporters observed in normal adipocytes. The model is also able to accurately simulate the changes in regulation of glucose transporter translocation observed with increases in cell surface area. Finally, the model can simulate pathogenic states which induce impairment of glucose transporter regulation (e.g. altered glucose transporter regulation in adipocytes from rats on high fat diets, rats with streptozotocin induced diabetes, and fasted rats). Since the structure of our model is sufficient to explain glucose transporter regulation in both normal and pathological states, it may aid in understanding the post-receptor components of insulin resistance (decreased sensitivity or responsiveness to insulin) seen in pathological states such as obesity and diabetes mellitus.  相似文献   

2.
Summary Insulin is able to stimulate a growth response in a variety of different cell types. However, the role of the insulin receptor in mediating this response is not clear. Indeed, it has been reported that the ability of insulin to stimulate a growth response is a result of its interaction with other growth factor receptors rather than the insulin receptor.We have previously reported that the H-35 hepatoma cell line responded to physiological concentrations of insulin as a growth factor and that the relative potency of proinsulin suggested that this response was mediated by the insulin receptor. In this report, two experimental approaches are used to demonstrate the involvement of the insulin receptor in mediating the growth response. Two different preparations of antibody to the insulin receptor are found to be capable of stimulating this response. In addition, the human insulin-like growth factors (IGF-I and II) show very low cross-reactivity with the insulin receptor and are significantly less potent than insulin in stimulating the growth response.Abbrevations IGF insulin-like growth factor - MSA multiplication stimulating activity - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   

3.
Monomeric ferritin-insulin and high-resolution electron microscopic analysis were used to study the organization, distribution, and movement of insulin receptors on differentiated 3T3-L1 adipocytes. Analysis of the binding to prefixed cells showed that insulin initially occupied single and paired receptors preferentially located on microvilli. The majority of receptors (60%) were found as single molecules and 30% were pairs. In 1 min at 37% C, 50% of the receptors on nonfixed cells were found on the intervillous plasma membrane and more than 70% of the total receptors had microaggregated. By 30 min only 7% of the receptors were single or paired molecules on microvilli. The majority were on the intervillous membrane, with 95% of those receptors in groups. The receptor groups on the intervillous plasma membrane could be found in both noncoated invaginations and coated pits. The concentration of occupied receptors in the noncoated invaginations and the coated pits was similar; however, ten times more noncoated invaginations than coated pits contained occupied insulin receptors. The observations in this study contrast with those reported on rat adipocytes using identical techniques (Jarett and Smith, 1977). Insulin receptors on adipocytes were initially grouped and randomly distributed over the entire cell surface and did not microaggregate into larger groups. Insulin receptors on rat adipocytes were found in noncoated invaginations but were excluded from the coated pits. The differences in the organization and behavior of the insulin receptor between rat and 3T3-L1 adipocytes suggest that the mechanisms regulating the initial organization of insulin receptors and the aggregation of occupied receptors may be controlled by tissue-specific processes. Since both of these cell types are equally insulin sensitive, the differences in the initial organization and distribution of the insulin receptors on the cell surface may not be related to the sensitivity or biological responsiveness of these cells to insulin but may affect other processes such as receptor regulation and internalization. On the other hand, the microaggregates of occupied receptors on both cell types may relate to biological responsiveness.  相似文献   

4.
Tyrosine kinase receptors play a key role in the communication of cells with their environment. Growth hormone receptors, such as insulin receptors, are involved in the regulation of cell growth, differentiation and metabolism in multicellular organisms. Insulin-related peptides and members of the insulin receptor subfamily have been described in a wide variety of invertebrates, including freshwater molluscs. In this paper, we describe the metabolic effect of insulin on a mollusc cell line (Bge) derived from embryos of the snail Biomphalaria glabrata. Using a PCR strategy, we have cloned from Bge cells a cDNA encoding a protein (BgIR) homologous to, and exhibiting all of the typical features of insulin receptors. Northern blot analysis confirmed the expression of BgIR in B. glabrata snails and suggested its wide distribution in the snail body. Bge cells have been shown to provide the environmental conditions necessary for the in vitro development of the sporocysts of Schistosoma mansoni, a trematode parasite that uses B. glabrata as an intermediate host. The possible implication of BgIR in the activating and proliferating processes observed in Bge cells during their coculture with S. mansoni larvae is discussed.  相似文献   

5.
Receptor down-regulation is the result of various cellular processes including receptor internalization, new synthesis, and recycling. Monensin, a monocarboxylic acid ionophore, has been used to characterize the role of recycling in the metabolism of insulin receptors on two cultured human cell lines, U-937 and IM-9, which have different rates of internalization. The U-937 monocyte-like cell internalizes insulin receptors readily. Incubation with monensin at low doses (10(-6) to 10(-7) M) for 2 h did not affect subsequent surface insulin binding. However, the drug markedly enhanced insulin-induced down-regulation. Monensin had little effect on ligand internalization in this cell line as demonstrated by quantitative morphometric analysis. The IM-9 lymphocyte, a slow internalizer, was less sensitive to monensin exposure. Prolonged exposure (12 h) to this compound of either cell line resulted in apparent inhibition of insertion into the surface membrane of both newly synthesized and recycled receptors. When solubilization was used to quantitate total cell receptors, there was essentially no difference in intact cell binding (i.e. surface receptors) and total cell binding in IM-9 cells when insulin-induced down regulation alone was compared to insulin and monensin. By contrast for the U-937 cells there was only a small further decrease in binding when monensin was added to insulin in the solubilized cells compared to the marked augmentation of down-regulation when monensin was added to insulin in intact cells. These data demonstrate that cells with a rapid internalization rate have an associated active recycling process. By contrast cells with a slow internalization rate have a similarly slow recycling rate. This is consistent with relatively equal rates of receptor biosynthesis and plasma membrane insertion in both cell types.  相似文献   

6.
Biological actions of insulin regulate glucose metabolism and other essential physiological functions. Binding of insulin to its cell surface receptor initiates signal transduction pathways that mediate cellular responses. Thus, it is of great interest to understand the mechanisms underlying insulin receptor binding kinetics. Interestingly, negative cooperative interactions are observed at high insulin concentrations while positive cooperativity may be present at low insulin concentrations. Clearly, insulin receptor binding kinetics cannot be simply explained by a classical bimolecular reaction. Mature insulin receptors have a dimeric structure capable of binding two molecules of insulin. The binding affinity of the receptor for the second insulin molecule is significantly lower than for the first bound insulin molecule. In addition, insulin receptor aggregation occurs in response to ligand binding and aggregation may also influence binding kinetics. In this study, we develop a mathematical model for insulin receptor binding kinetics that explicitly represents the divalent nature of the insulin receptor and incorporates receptor aggregation into the kinetic model. Model parameters are based upon published data where available. Computer simulations with our model are capable of reproducing both negative and positive cooperativity at the appropriate insulin concentrations. This model may be a useful tool for helping to understand the mechanisms underlying insulin receptor binding and the coupling of receptor binding to downstream signaling events.  相似文献   

7.
Molecular properties of inositol 1,4,5-trisphosphate receptors.   总被引:15,自引:0,他引:15  
The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge about the structure, regulation and function of IP3 receptors. For example, several Ca(2+)-binding sites and a Ca(2+)-calmodulin-binding domain have been mapped within the type I IP3 receptor, and studies on purified cerebellar IP3 receptors propose a second Ca(2+)-independent calmodulin-binding domain. In addition, minimal requirements for the binding of immunophilins and the formation of tetramers have been identified. Overexpression of IP3 receptors has provided further clues to the regulation of individual IP3 receptor isoforms present within cells, and the role that they play in the generation of IP3-dependent Ca2+ signals. Inhibition of IP3 receptor function and expression, and analysis of mutant IP3 receptors, suggests that IP3 receptors are involved in such diverse cellular processes as proliferation and apoptosis and are thus, necessary for normal development. Our understanding of the complex spatial and temporal nature of cytosolic Ca2+ increases and the role that these Ca2+ signals play in cell function depend upon our knowledge of the structure and the regulation of IP3 receptors. This review focuses on the molecular properties of these ubiquitous intracellular Ca2+ channels.  相似文献   

8.
Molecular biology of GABAA receptors   总被引:37,自引:0,他引:37  
R W Olsen  A J Tobin 《FASEB journal》1990,4(5):1469-1480
The major type of receptor for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), called the GABAA receptor, is a member of a gene superfamily of ligand-gated ion channels. This receptor is a hetero-oligomeric protein composed of several distinct polypeptide types (alpha, beta, gamma, and delta). Molecular cloning of these polypeptides reveals that they show 20-40% identity with each other, and 10-20% identity with polypeptides of the nicotinic acetylcholine receptors and strychnine-sensitive glycine receptor. Each polypeptide type is also represented by a family of genes whose members have 60-80% amino acid sequence identity. Regions of conserved and variable amino acid sequence suggest structural and functional domains within each polypeptide. All of the polypeptides when expressed in heterologous cells produce GABA-activated chloride channels, and the different subtypes express different pharmacological properties. The distributions of mRNAs for the different GABAA receptor polypeptides and their subtypes show significant brain regional variation consistent with pharmacological and biochemical evidence for receptor heterogeneity. Subpopulations of GABAA receptors with different cellular and regional locations show differential sensitivity to GABA, to modulators like steroids, to physiological regulation, to disease processes, and to pharmacological manipulation by drugs such as benzodiazepines. The properties of the different subpopulations of GABAA receptors are determined by which one or more of the different polypeptides and their subtypes are expressed in a given cell to produce a variety of different oligomeric protein structures. Molecular cloning techniques have produced rapid advances in understanding the GABAA receptor protein family.  相似文献   

9.
Insulin binding and insulin receptor gene expression have been assessed in cultured fetal (WI38) and SV40 transformed fetal (WI38/VA13) human fibroblasts to determine whether transformation influences the expression of insulin receptors. The transformed cell line had virtually no insulin binding and extremely low levels of insulin receptor mRNA. No apparent gene deletion or rearrangement was detected and therefore the marked decrease in insulin receptor gene expression seen in WI38/VA13 cells is an important example of negative regulation of insulin receptor gene expression. This cell line could serve as a model for studies of the mechanism for negative regulation of insulin receptor gene expression. Overexpression of the insulin receptor gene in these cells may reveal insights into the role of the insulin receptor in tumor biology.  相似文献   

10.
1246-3A cell line is an insulin-independent variant isolated from the adipogenic cell line 1246 which can proliferate in the absence of insulin, has lost the ability to differentiate, and secretes an insulin-related factor called IRF similar to pancreatic insulin and different from IGFs. In contrast, the parent adipogenic cell line 1246 is dependent on the presence of insulin to proliferate and differentiate in defined medium. In the present paper, we examined if the loss of response to insulin observed for 1246-3A cells was accompanied by alterations in the insulin receptor properties. Insulin binding and tyrosine kinase activity of insulin receptors isolated from 1246-3A cells and from the parent cell line 1246 were measured; 125I-insulin binding to intact cells was 75% lower for the 1246-3A cells than for the 1246 cells. This was due to a decrease in receptor number without major change in receptor affinity. However, when the cells were solubilized in 1% Triton X-100 and the insulin receptor was partially purified by chromatography on wheat germ agglutinin-agarose, a similar pattern of binding was observed for both cell lines. Down regulation of insulin receptors by insulin occurred in a dose-dependent fashion, which was similar for both cell lines. Phosphorylation experiments were performed by incubation of the partially purified insulin receptor with insulin and [gamma-32P]ATP. They indicated that insulin stimulated phosphorylation of the 95-kDa molecular weight beta subunit of the receptor, in a similar fashion for both cell types. These data suggest that the insulin-independent cell line 1246-3A does not possess a specific defect in the insulin receptor which alters both its binding and autophosphorylation properties and that the loss of response to insulin can be attributed to the fact the 1246-3A cells secrete IRF which bind to cell surface receptors and stimulate their proliferation.  相似文献   

11.
Down-regulation of insulin receptors is related to insulin internalization   总被引:1,自引:0,他引:1  
In the present study, we have tested the influence of inhibition of endocytosis by hypertonic medium on the regulation of cell surface insulin receptors. We show that active internalization of 125I-insulin is markedly inhibited by hypertonic media and that, in parallel, cell surface invaginations are significantly diminished. These two events are accompanied by a marked inhibition of cell surface insulin receptor down-regulation. These data provide further strong evidence that receptor-mediated endocytosis is the major mechanism by which insulin receptors are regulated at the surface of target cells.  相似文献   

12.
The insulin-like growth factor-I (IGF-I) plays an important role in determining the biological behavior of a variety of malignancies. We measured IGF-I, its receptor and related receptors in thyroid cancer. IGF-I was present both in normal thyroid tissue and in thyroid cancer tissue and it was produced by stromal cells but not by thyrocytes. Values were significantly higher in malignant than in normal tissue. IGF-I receptors (IGF-I-Rs) and the homologous insulin receptors (IRs) were found overexpressed in both thyroid cancer cell lines (n = 4) and specimens (n = 17) as compared to normal values. In addition, high levels of hybrid IGF-I/insulin receptors (IR/IGF-I-Rs) were present in both thyroid cancer specimens and cell lines. IR/IGF-I-R hybrids were the most represented type of receptor in 14/17 specimens and exceeded the IGF-I-R content in all cases. Hybrid content correlated with the IR and IGF-I-R content, suggesting that in thyroid tissue hybrid formation occurs by random assembly of IR and IGF-I-R half receptors. Hybrid receptor autophosphorylation was stimulated by IGF-I with high affinity. In cells with a high IR/IGF-I-Rs content, blocking antibodies specific to these receptors substantially inhibited IGF-I induced cell growth. These data indicate that the IGF-I system is overactivated in thyroid cancer and that IR/IGF-I-R hybrid receptors play an important role in IGF-I mitogenic signaling in these tumors.  相似文献   

13.
IGF I receptor is a tyrosine kinase capable of phosphorylating the receptor itself and other substrates. A high degree of homology does exist in tyrosine kinase domain among receptors for several polypeptide growth factor receptors and this enzymic activity has been indicated as a possible mediator of biological action. Nevertheless growth factor receptors possess peculiar specificities both in their functions and tissue distribution. A human polyclonal IgG (pIgG), previously characterized as anti insulin receptor antibody, able to inhibit insulin receptor kinase activity, was used to further investigate subunit homologies and differences in antigenicity and functional regulation between IGF I and insulin receptors, IGF I receptor tyrosine kinase was stimulated by a IGF I analog (aIGF I), produced by DNA recombinant technology, pIgG was able to inhibit IGF I receptor kinase activity, thus revealing antigenic homologies between the kinase domains of insulin and IGF I receptors. However the more pronounced inhibition of IGF I receptor-compared with insulin receptor kinase activity by pIgG suggests the existence of different regulatory mechanisms.  相似文献   

14.
Insulin binds to its specific cell surface receptor in cultured human fibroblasts and also stimulates the conversion of glycogen synthase from the glucose-6-phosphate (G-6-P) dependent to the G-6-P independent form. Although these two processes are tightly coupled in most target tissues for insulin action, in the fibroblast a variety of findings question the relationship of these two events to one another. In human fibroblasts the amount of insulin required to displace half of the 125I-insulin bound to the insulin receptor is 4 ng/ml (6.6 X 10(-10)M), but the activation of glycogen synthase is not maximal until 1-10 micrograms/ml with an ED50 of 30 ng/ml insulin. Antibodies directed against the insulin receptor, which activate glycogen synthase in both fat and muscle, do not stimulate the activation of glycogen synthase in the fibroblast. Fab fragments from anti-insulin receptor antibody compete for insulin binding, but do not inhibit the insulin-stimulated rise in independent activity. The insulin-like growth factor, MSA, which is 1% as potent as insulin in stimulating glucose oxidation in rat fat cells and in inhibiting 125I-insulin binding to human fibroblasts, is 25% as potent as insulin in stimulating glycogen synthase. Proinsulin is 2-10% as potent as insulin, but behaves as a "partial agonist" of insulin action in the fibroblast, i.e. proinsulin is able to elicit only 60% of the maximal response of insulin in the glycogen synthase assay, even at high concentrations. Finally, cell lines from patients with clearly defective insulin receptors exhibit normal insulin dose response curves for the activation of glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Evidence has accumulated to support a model for odorant detection in which individual olfactory receptor neurons (ORNs) express one of a large family of G protein-coupled receptor proteins that are activated by a small number of closely related volatile chemicals. However, the issue of whether an individual ORN expresses one or multiple types of receptor proteins has yet to be definitively addressed. Physiological data indicate that some individual ORNs can be activated by odorants differing substantially in structure and/or perceived quality, suggesting multiple receptors or one nonspecific receptor per cell. In contrast, molecular biological studies favor a scheme with a single, fairly selective receptor per cell. The present studies directly assessed whether individual rat ORNs can express multiple receptors using single-cell PCR techniques with degenerate primers designed to amplify a wide variety of receptor sequences. We found that whereas only a single OR sequence was obtained from most ORNs examined, one ORN produced two distinct receptor sequences that represented different receptor gene families. Double-label in situ hybridization studies indicated that a subset of ORNs co-express two distinct receptor mRNAs. A laminar segregation analysis of the cell nuclei of ORNs labeled with the two OR mRNA probes showed that for one probe, the histogram of the distribution of the cell nuclei along the depth of the epithelium was bimodal, with one peak overlapping the (unimodal) histogram for the other probe. These results are consistent with co-expression of two OR mRNAs in a population of single ORNs.  相似文献   

16.
The insulin/insulin-like growth factor-1 (IGF-1) signalling pathways are present in most mammalian cells and play important roles in the growth and metabolism of tissues. Most proteins in these pathways have also been identified in the beta-cells of the pancreatic islets. Tissue-specific knockout of the insulin receptor (betaIRKO) or IGF-1 receptor (betaIGFRKO) in pancreatic beta-cells leads to altered glucose-sensing and glucose intolerance in adult mice, and betaIRKO mice show an age-dependent decrease in islet size and beta-cell mass. These data indicate that these receptors are important for differentiated function and are unlikely to play a major role in the early growth and/or development of the pancreatic islets. Conventional insulin receptor substrate-1 (IRS-1) knockouts manifest growth retardation and mild insulin resistance. The IRS-1 knockouts also display islet hyperplasia, defects in insulin secretory responses to multiple stimuli both in vivo and in vitro, reduced islet insulin content and an increased number of autophagic vacuoles in the beta-cells. Re-expression of IRS-1 in cultured beta-cells is able to partially restore the insulin content indicating that IRS-1 is involved in the regulation of insulin synthesis. Taken together, these data provide evidence that insulin and IGF-1 receptors and IRS-1, and potentially other proteins in the insulin/IGF-1 signalling pathway, contribute to the regulation of islet hormone secretion and synthesis and therefore in the maintenance of glucose homeostasis.  相似文献   

17.
The receptors for insulin and insulin-like growth factor-I (IGF-I) are closely related in primary sequence and overall structure. We have examined the immunological relationships between these receptors by testing the reactivity of anti-(insulin receptor) monoclonal antibodies with IGF-I receptors in various tissues and cell lines. Antibodies for six distinct epitopes reacted with a subfraction of IGF-I receptors, as shown by inhibition of 125I-IGF-I binding, precipitation of 125I-IGF-I-receptor complexes or immunodepletion of receptor from tissue extracts before binding assays. Both immunoreactive and non-immunoreactive subfractions displayed the expected properties of 'classical' IGF-I receptors, in terms of relative affinities for IGF-I and insulin. The proportion of total IGF-I receptors which was immunoreactive varied in different cell types, being approx. 40% in Hep G2 cells, 35-40% in placental membranes and 75-85% in IM-9 cells. The immunoreactive fraction was somewhat higher in solubilized receptors than in the corresponding intact cells or membranes. A previously described monoclonal antibody, alpha-IR-3, specific for IGF-I receptors, inhibited IGF-I binding by more than 80% in all preparations. When solubilized placental receptors were pretreated with dithiothreitol (DTT) under conditions reported to reduce intramolecular (class I) disulphide bonds, the immunoreactivity of IGF-I receptors was abolished although total IGF-I binding was little affected. Under the same conditions insulin receptors remained fully immunoreactive. When solubilized receptor preparations were fractionated by gel filtration, both IGF-I and insulin receptors ran as symmetrical peaks of identical mobility. After DTT treatment, the IGF-I receptor was partially converted to a lower molecular mass form which was not immunoreactive. The insulin receptor peak showed a much less pronounced skewing and remained fully immunoreactive in all fractions. It is concluded that the anti- (insulin receptor) antibodies do not react directly with IGF-I receptor polypeptide, and that the apparent immunoreactivity of a subfraction of IGF-I receptors reflects their physical association with insulin receptors, both in cell extracts and in intact cells. The most likely basis for this association appears to be a 'hybrid' receptor containing one half (alpha beta) of insulin receptor polypeptide and the other (alpha' beta') of IGF-I receptor polypeptide within the native (alpha beta beta' alpha') heterotetrameric structure.  相似文献   

18.
Insulin receptors and bioresponses in a human liver cell line (Hep G-2)   总被引:4,自引:0,他引:4  
A newly developed human hepatoma cell line, designated Hep G-2, expresses high-affinity insulin receptors meeting all the expected criteria for classic insulin receptors. 125I-insulin binding is time-dependent and temperature-dependent and unlabeled insulin competes for the labeled hormone with a half-maximal displacement of 1-3 ng/ml. This indicates a Kd of about 10(-10) M. Since Scatchard analysis of the binding data results in a curvilinear plot and unlabeled insulin accelerates the dissociation of bound hormone, these receptors exhibit the negative cooperative interactions characteristic of insulin receptors in many other cell and tissue types. Proinsulin and des(Ala, Asp)-insulin compete for 125I-insulin binding with 4% and 2%, respectively, of the potency of insulin. Anti-(insulin receptor) antibody competes fully for insulin binding. The two insulin-like growth factors, multiplication-stimulating activity and IGF-I are 2% as potent as insulin against the Hep G-2 insulin receptor. Furthermore, Hep G-2 cells respond to insulin in several bioassays. Glucose uptake, glycogen synthase, uridine incorporation into RNA and acetate incorporation into lipid are all stimulated to varying degrees by physiological concentrations of insulin. In addition, these cells 'down-regulate' their insulin receptor, internalize 125I-insulin and degrade insulin in a manner similar to freshly isolated rodent hepatocytes. This is the first available human liver cell line in permanent culture in which both insulin receptors and biological responses have been carefully examined.  相似文献   

19.
20.
We report our initial efforts in the analysis of endogenous nuclear receptor coactivator complexes as a research bridging strand of the Nuclear Receptor Signaling Atlas (NURSA) (www.NURSA.org). A proteomic approach is used to systematically isolate a variety of coactivator complexes using HeLa cells as a model cell line and to identify the coactivator-associated proteins with mass spectrometry. We have isolated and identified seven coactivator complexes including the p160 steroid receptor coactivator family, cAMP response element binding protein-binding protein, p300, coactivator of activating protein-1 and estrogen receptors, and E6 papillomavirus-associated protein. The newly identified coactivator-associated proteins provide unbiased clues and links for understanding of the endogenous hormone receptor coregulator network and its regulation. We hope that the electronic availability of these data to the general scientific community will facilitate generation and testing of new hypotheses to further our understanding of nuclear receptor signaling and coactivator functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号