首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Reisert J  Lai J  Yau KW  Bradley J 《Neuron》2005,45(4):553-561
In vertebrate olfactory receptor neurons (ORNs), the odorant-triggered receptor current flows through two distinct ion channels on the sensory cilia: Ca2+ influx through a cyclic nucleotide-gated (CNG) channel followed by Cl- efflux through a Ca2+-activated anion channel. The excitatory Cl- current amplifies the small CNG current and crucially depends on a high intracellular Cl- concentration. We show here that a (Na+)-(K+)-(2Cl-) cotransporter, NKCC1, is required for this Cl- current, in that ORNs deficient in Nkcc1 or incubated with an NKCC blocker (bumetanide) lack the Cl- current. Surprisingly, immunocytochemistry indicates that NKCC1 is located on the somata and dendrites of ORNs rather than the cilia, where transduction occurs. This topography is remarkably similar to the situation in secretory epithelial cells, where basolateral Cl- uptake and apical Cl- efflux facilitate transepithelial fluid movement. Thus, a single functional architecture serves two entirely different purposes, probably underscoring the epithelial origin of the ORNs.  相似文献   

2.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

3.
Vertebrate olfactory sensory neurons rapidly adapt to repetitive odorant stimuli. Previous studies have shown that the principal molecular mechanisms for odorant adaptation take place after the odorant-induced production of cAMP, and that one important mechanism is the negative feedback modulation by Ca2+-calmodulin (Ca2+-CaM) of the cyclic nucleotide-gated (CNG) channel. However, the physiological role of the Ca2+-dependent activity of phosphodiesterase (PDE) in adaptation has not been investigated yet. We used the whole-cell voltage-clamp technique to record currents in mouse olfactory sensory neurons elicited by photorelease of 8-Br-cAMP, an analogue of cAMP commonly used as a hydrolysis-resistant compound and known to be a potent agonist of the olfactory CNG channel. We measured currents in response to repetitive photoreleases of cAMP or of 8-Br-cAMP and we observed similar adaptation in response to the second stimulus. Control experiments were conducted in the presence of the PDE inhibitor IBMX, confirming that an increase in PDE activity was not involved in the response decrease. Since the total current activated by 8-Br-cAMP, as well as that physiologically induced by odorants, is composed not only of current carried by Na+ and Ca2+ through CNG channels, but also by a Ca2+-activated Cl- current, we performed control experiments in which the reversal potential of Cl- was set, by ion substitution, at the same value of the holding potential, -50 mV. Adaptation was measured also in these conditions of diminished Ca2+-activated Cl- current. Furthermore, by producing repetitive increases of ciliary's Ca2+ with flash photolysis of caged Ca2+, we showed that Ca2+-activated Cl- channels do not adapt and that there is no Cl- depletion in the cilia. All together, these results indicate that the activity of ciliary PDE is not required for fast adaptation to repetitive stimuli in mouse olfactory sensory neurons.  相似文献   

4.
High-gain, low-noise amplification in olfactory transduction.   总被引:4,自引:0,他引:4       下载免费PDF全文
It is desirable that sensory systems use high-gain, low-noise amplification to convert weak stimuli into detectable signals. Here it is shown that a pair of receptor currents underlying vertebrate olfactory transduction constitutes such a scheme. The primary receptor current is an influx of Na+ and Ca2+ through cAMP-gated channels in the olfactory cilia. External divalent cations improve the signal-to-noise properties of this current, reducing the mean current and the current variance. As Ca2+ enters the cilium, it gates Cl- channels, activating a secondary depolarizing receptor current. This current amplifies the primary current, but introduces little additional noise. The system of two currents plus divalent cations in the mucus produces a large receptor current with very low noise.  相似文献   

5.
Castillo K  Bacigalupo J  Wolff D 《FEBS letters》2005,579(7):1675-1682
Olfactory cilia contain cyclic nucleotide-gated and Ca2+-dependent Cl- conductances that underlie excitatory chemotransduction, and a Ca2+-dependent K+ (KCa) conductance, apparently involved in inhibitory transduction. Previous single-channel patch-clamp studies on olfactory cilia revealed four different KCas, with different conductances and kinetics. Here, we further characterized these channels in planar bilayers, where blockers could be properly tested. All four ciliary KCas were observed: The 16 pS channel, K0.5,Ca=40 microM and apamin-sensitive; the 30 and 50 pS channel, K0.5,Ca=59 microM, clotrimazole-sensitive and charybdotoxin-insensitive; the 60 pS channel, clotrimazole-sensitive and charybdotoxin-insensitive; and the 210 pS channel, K0.5,Ca=63 microM, blocked by charybdotoxin and iberiotoxin. The presence of the 16 and 210 pS channels was confirmed by immunoblotting.  相似文献   

6.
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.  相似文献   

7.
8.
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.  相似文献   

9.
Ca2+-activated Cl- channels play important diverse roles from fast block to polyspermy to olfactory transduction, but their molecular identity has not been firmly established. By searching sequence databases with the M2 pore domain of ligand-gated anion channels, we identified potential Ca2+-activated Cl- channels, which included members of the bestrophin family. We cloned two bestrophins from Xenopus oocytes, which express high levels of Ca2+-activated Cl- channels. The Xenopus bestrophins were expressed in a variety of tissues. We predict that bestrophin has six transmembrane domains with the conserved RFP domain playing an integral part in ionic selectivity. When Xenopus bestrophins were heterologously expressed in human embryonic kidney-293 cells, large Ca2+-activated Cl- currents were observed. The currents are voltage- and time-independent, do not rectify, have a Kd for Ca2+ of approximately 210 nm, and exhibit a permeability ratio of I- > Br- > Cl- > aspartate. The W93C and G299E mutations produce non-functional channels that exert a dominant negative effect on wild type channels. We conclude that bestrophins are the first molecularly identified Cl- channels that are dependent on intracellular Ca2+ in a physiological range.  相似文献   

10.
The odorant-induced Ca(2+) increase inside the cilia of vertebrate olfactory sensory neurons controls both excitation and adaptation. The increase in the internal concentration of Ca(2+) in the cilia has recently been visualized directly and has been attributed to Ca(2+) entry through cAMP-gated channels. These recent results have made it possible to further characterize Ca(2+)'s activities in olfactory neurons. Ca(2+) exerts its excitatory role by directly activating Cl(-) channels. Given the unusually high concentration of ciliary Cl(-), Ca(2+)'s activation of Cl(-) channels causes an efflux of Cl(-) from the cilia, contributing high-gain and low-noise amplification to the olfactory neuron depolarization. Moreover, in combination with calmodulin, Ca(2+) mediates odorant adaptation by desensitizing cAMP-gated channels. The restoration of the Ca(2+) concentration to basal levels occurs via a Na(+)/Ca(2+) exchanger, which extrudes Ca(2+) from the olfactory cilia.  相似文献   

11.
Chloride channels in the small intestinal cell line IEC-18   总被引:1,自引:0,他引:1  
Small intestinal crypt cells play a critical role in modulating Cl- secretion during digestion. The types of Cl- channels mediating Cl- secretion in the small intestine was investigated using the intestinal epithelial cell line, IEC-18, which was derived from rat small intestine crypt cells. In initial radioisotope efflux studies, exposure to forskolin, ionomycin or a decrease in extracellular osmolarity significantly increased 36Cl efflux as compared to control cells. Whole cell patch clamp techniques were subsequently used to examine in more detail the swelling-, Ca2+-, and cAMP-activated Cl- conductance. Decreasing the extracellular osmolarity from 290 to 200 mOsm activated a large outwardly rectifying Cl- current that was voltage-independent and had an anion selectivity of I- > Cl-. Increasing cytosolic Ca2+ by ionomycin activated whole cell Cl- currents, which were also outwardly rectifying but were voltage-dependent. The increase in intracellular Ca2+ levels with ionomycin was confirmed with fura-2 loaded IEC-18 cells. A third type of whole cell Cl- current was observed after increases in intracellular cAMP induced by forskolin. These cAMP-activated Cl- currents have properties consistent with cystic fibrosis transmembrane regulator (CFTR) Cl- channels, as the currents were blocked by glibenclamide or NPPB but insensitive to DIDS. In addition, the current-voltage relationship was linear and had an anion selectivity of Cl- > I-. Confocal immunofluorescence studies and Western blots with two different anti-CFTR antibodies confirmed the expression of CFTR. These results suggest that small intestinal crypt cells express multiple types of Cl- channels, which may all contribute to net Cl- secretion.  相似文献   

12.
13.
We used molecular biological and patch-clamp techniques to identify the Ca(2+)-activated K(+) channel genes in mouse parotid acinar cells. Two types of K(+) channels were activated by intracellular Ca(2+) with single-channel conductance values of 22 and 140 pS (in 135 mM external K(+)), consistent with the intermediate and maxi-K classes of Ca(2+)-activated K(+) channels, typified by the mIK1 (Kcnn4) and mSlo (Kcnma1) genes, respectively. The presence of mIK1 mRNA was established in acinar cells by in situ hybridization. The electrophysiological and pharmacological properties of heterologously expressed mIK1 channels matched those of the native current; thus the native, smaller conductance channel is likely derived from the mIK1 gene. We found that parotid acinar cells express a single, uncommon splice variant of the mSlo gene and that heterologously expressed channels of this Slo variant had a single-channel conductance indistinguishable from that of the native, large-conductance channel. However, the sensitivity of this expressed Slo variant to the scorpion toxin iberiotoxin was considerably different from that of the native current. RT-PCR analysis revealed the presence of two mSlo beta-subunits (Kcnmb1 and Kcnmb4) in parotid tissue. Comparison of the iberiotoxin sensitivity of the native current with that of parotid mSlo expressed with each beta-subunit in isolation and measurements of the iberiotoxin sensitivity of currents in cells from beta(1) knockout mice suggest that parotid acinar cells contain approximately equal numbers of homotetrameric channel proteins from the parotid variant of the Slo gene and heteromeric proteins composed of the parotid Slo variant in combination with the beta(4)-subunit.  相似文献   

14.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

15.
Kawai F 《Biophysical journal》2002,82(4):2005-2015
The olfactory system is thought to accomplish odor adaptation through the ciliary transduction machinery in olfactory receptor cells (ORCs). However, ORCs that have lost their cilia can exhibit spike frequency accommodation in which the action potential frequency decreases with time despite a steady depolarizing stimulus. This raises the possibility that somatic ionic channels in ORCs might serve for odor adaptation at the level of spike encoding, because spiking responses in ORCs encode the odor information. Here I investigate the adaptational mechanism at the somatic membrane using conventional and dynamic patch-clamp recording techniques, which enable the ciliary mechanism to be bypassed. A conditioning stimulus with an odorant-induced current markedly shifted the response range of action potentials induced by the same test stimulus to higher concentrations of the odorant, indicating odor adaptation. This effect was inhibited by charybdotoxin and iberiotoxin, Ca2+-activated K+ channel blockers, suggesting that somatic Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding. I conclude that not only the ciliary machinery but also the somatic membrane currents are crucial to odor adaptation.  相似文献   

16.
A family of calcium-dependent potassium channels from rat brain   总被引:19,自引:0,他引:19  
P H Reinhart  S Chung  I B Levitan 《Neuron》1989,2(1):1031-1041
By incorporating rat brain plasma membrane vesicles into planar lipid bilayers, we have found and characterized four types of Ca2(+)-activated K+ channels. The unitary conductances of these channels are 242 +/- 14 pS, 236 +/- 16 pS, 135 +/- 10 pS, and 76 +/- 6 pS in symmetrical 150 mM KCI buffers. These channels share a number of properties. They are all activated by depolarizing voltages, activated by micromolar concentrations of internal Ca2+ with a Hill coefficient for Ca2+ activation of between 2 and 3, noninactivating under our assay conditions, blocked by low millimolar concentrations of TEA from the outside, apamin-insensitive, and very selective for K+ over Na+ and Cl-. Three of the four channels are also blocked by nanomolar concentrations of charybdotoxin. One of the high conductance Ca2(+)-activated K+ channels is novel in that it is not blocked by charybdotoxin and exhibits gating kinetics highlighted by long closed times and long open times. This family of closely related Ca2(+)-activated K+ channels may share structural domains underlying particular functions.  相似文献   

17.
GT1 cells are immortalized hypothalamic neurons that show spontaneous bursts of action potentials and oscillations in intracellular calcium concentration [Ca(2+)](i), as well as pulsatile release of GNRH: We investigated the role of cyclic nucleotide gated (CNG) channels in the activity of GT1 neurons using patch clamp and calcium imaging techniques. Excised patches from GT1 cells revealed single channels and macroscopic currents that were activated by either cAMP or cGMP. CNG channels from GT1 cells showed rapid transitions from open to closed states typical of heteromeric CNG channels, were selective for cations, and had an estimated single channel conductance of 60 picosiemens (pS). Ca(2+) inhibited the conductance of macroscopic currents and caused rectification of currents at increasingly positive and negative potentials. The membrane permeant cAMP analog Sp-cAMP-monophosphorothioate (Sp-cAMPS) increased the frequency of spontaneous Ca(2+) oscillations in GT1 cells, whereas the Rp-cAMPS isomer had only a slight stimulatory effect on Ca(2+) signaling. Forskolin, norepinephrine, and dopamine, all of which stimulate cAMP production in GT1 cells, each increased the frequency of Ca(2+) oscillations. The effects of Sp-cAMPS or NE on Ca(2+) signaling did not appear to be mediated by protein kinase A, since treatment with either H9 or Rp-cAMPS did not inhibit the response. The CNG channel inhibitor L-cis-diltiazem inhibited cAMP-activated channels in GT1 cells. Both L-cis-diltiazem and elevated extracellular Ca(2+) reversibly inhibited the stimulatory effects of cAMP-generating ligands or Sp-cAMP on Ca(2+) oscillations. These results indicate that CNG channels play a primary role in mediating the effects of cAMP on excitability in GT1 cells, and thereby may be important in the modulation of GnRH release.  相似文献   

18.
The role of the soma of spiny lobster olfactory receptor cells in generating odor-evoked electrical signals was investigated by studying the ion channels and macroscopic currents of the soma. Four ionic currents; a tetrodotoxin-sensitive Na+ current, a Ca++ current, a Ca(++)-activated K+ current, and a delayed rectifier K+ current, were isolated by application of specific blocking agents. The Na+ and Ca++ currents began to activate at -40 to -30 mV, while the K+ currents began to activate at -30 to -20 mV. The size of the Na+ current was related to the presence of a remnant of a neurite, presumably an axon, and not to the size of the soma. No voltage-dependent inward currents were observed at potentials below those activating the Na+ current, suggesting that receptor potentials spread passively through the soma to generate action potentials in the axon of this cell. Steady-state inactivation of the Na+ current was half-maximal at -40 mV. Recovery from inactivation was a single exponential function that was half-maximal at 1.7 ms at room temperature. The K+ currents were much larger than the inward currents and probably underlie the outward rectification observed in this cell. The delayed rectifier K+ current was reduced by GTP-gamma-S and AIF-4, agents which activate GTP-binding proteins. The channels described were a 215-pS Ca(++)-activated K+ channel, a 9.7-pS delayed rectifier K+ channel, and a 35-pS voltage-independent Cl- channel. The Cl- channel provides a constant leak conductance that may be important in stabilizing the membrane potential of the cell.  相似文献   

19.
Single-channel currents were recorded from the plasma membrane of white adipocytes of 6-8-week-old male Sprague-Dawley rats. In outside-out patches (high K(+), no Ca(2+) in pipette), a voltage-dependent K-channel (delayed rectifier) with a single-channel conductance (gamma) of 16 pS (24 degrees C) in modified Ringer's was active at a density of 0.5/microm(2). It was blocked by TEA (IC(50)=1.5 mM). A Ca(2+)-activated non-selective cation channel (NSC-channel) appeared at a mean density of 1/microm(2) in inside-out patches ([Ca(2+)](i)=1.2 mM). gamma was 28 pS (24 degrees C). The NSC showed weak voltage dependence and was blocked by mefenamic acid and by internal ATP. In the cell-attached mode spontaneous activity could be blocked reversibly by 100 nM insulin. Noradrenaline (NA, 100 nM) induced a flickering activity of the NSC-channels. Isoproterenol (100 nM) caused activity of the NSC-channel as well. After 1 microM propranolol even 1 microM NA did not induce any activity. The alpha-antagonist phentolamine had no effect on isoproterenol- or on NA-induced currents. The beta(3)-agonists BRL 37344 and BRL 35135A induced activity of the NSC-channel at 100 nM as well. We conclude that white adipocytes express ion channels which are comparable to those in brown adipocytes and that beta-receptor activation opens NSC-channels thus allowing for Na(+) entry into white adipocytes.  相似文献   

20.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号