首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

PtHSP17.8 was regulated by various abiotic stresses. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses through maintain ROS homeostasis and cooperate with stress-related genes in Arabidopsis.

Abstract

Small heat shock proteins (sHSPs) play important roles in response to diverse biotic and abiotic stresses, especially in heat tolerance. However, limited information is available on the stress tolerance roles of sHSPs in woody species. To explore the function of sHSPs in poplar, we isolated and characterized PtHSP17.8 from Populus trichocarpa. Phylogenetic analysis and subcellular localization revealed that PtHSP17.8 was a cytosolic class I sHSP. The gene expression profile of PtHSP17.8 in various tissues showed that it was significantly accumulated in stem and root, which was consistent with the GUS expression pattern driven by promoter of PtHSP17.8. The expression of PtHSP17.8 could be induced by various abiotic stresses and significantly activated by heat stress. Overexpression of PtHSP17.8 enhanced the tolerance to heat and salt stresses in Arabidopsis. The seedling survival rate, root length, relative water content, antioxidative enzyme activities, proline, and soluble sugar content were increased in transgenic Arabidopsis under heat and salt stresses, but not in normal condition. The co-expression network of PtHSP17.8 were constructed and demonstrated many stress responsive genes included. The stress-related genes in the co-expression network were up-regulated in the PtHSP17.8 overexpression seedlings. These results suggest that PtHSP17.8 confers heat and salt tolerances in plants.
  相似文献   

2.

Key message

Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition.

Abstract

The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
  相似文献   

3.
In this study, we comparatively analyzed the 115 Hsp70 genes identified in Gossypium raimondii, Gossypium hirsutum and Gossypium arboreum genomes. Those Hsp70 genes unequally distributed among chromosomes in A and D genome of cotton (Gossypium spp.), and were classified into 29 groups according to the homology of them. Based on the localization information of the orthologs in Arabidopsis, the Hsp70 proteins were predicted to locate in cytosol, endoplasmic reticulum, mitochondrion or chloroplast. Homologous analysis indicated the evolutionary conservation of Hsp70 in cotton. In addition, those Hsp70 genes were differently expressed in Suyuan-045, Hai-7124 and TM-1, which were highly resistant, resistant, and sensitive to Verticillium dahliae respectively. The expressions of 26 Hsp70 genes were induced by Verticillium dahliae except for Hsp70-07/16/25/26, and the result suggested the potential involvement of them in responding to Verticillium wilt. Hsp70-08/30/31 was highly expressed in both Suyuan-045 and Hai-7124, and it was hypothesized that they might be involved in the resistance to the invasion of Verticillium dahliae. 144h after inoculation with Verticillium dahliae, the expression of Hsp70-13/14/15 was only up-regulated in Suyuan-045, and it was assumed that they might be involved in resistance to the extension of Verticillium dahliae. Further study on those Hsp70 genes would be valuable to reveal the role of them in Verticillium wilt resistance.  相似文献   

4.
5.
6.
7.
8.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

9.
10.
11.
12.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.  相似文献   

13.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

14.
15.
16.
17.
Recent environmental issues have increased the demand for woody biomass as a renewable resource for industry and energy. For a stable supply of woody biomass, it is critical to decrease the effects of abiotic stresses, such as drought and salinity, which hinder plant growth. For the goal to develop practical stress-tolerant trees, we generated transgenic poplar plants (P. tremula × tremuloides), in which a key Arabidopsis regulatory factor involved in stress responses, SNF1-related protein kinase 2C (AtSRK2C), or galactinol synthase 2 (AtGolS2), was overexpressed. Both types of transgenic poplar plants displayed higher tolerance to abiotic stresses, in comparison with nontransgenic plants, indicating that AtSRK2C and AtGolS2 can function in the abiotic stress response pathway of poplar. We also examined the expression profiles of ten poplar genes putatively homologous to well-known Arabidopsis stress response genes and found that several of the poplar genes showed different responses to abiotic stress from their Arabidopsis counterparts. Whereas the overexpression of AtSRK2C in transgenic Arabidopsis plants was reported to upregulate the expression of endogenous genes, the overexpression of AtSRK2C or AtGolS2 in transgenic poplar did not. Taken together, our findings suggest that the details of the underlying molecular mechanisms of the abiotic stress response may differ, but that the key regulatory factors in Arabidopsis and poplar have common features and are effective molecular targets for further breeding to enhance abiotic stress tolerance in poplar.  相似文献   

18.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

19.
Arbuscular mycorrhizal (AM) symbiosis is known to stimulate plant drought tolerance. However, the mechanisms underlying the synergistic responses of the symbiotic partners to drought stress are largely unknown. A split-root experiment was designed to investigate the molecular interactions between a host plant and an AM fungus (AMF) under drought stress. In the two-compartment cultivation system, an entire or only a half root system of a maize plant was inoculated with an AMF, Rhizophagus intraradices, in the presence of localized or systemic drought treatment. Plant physiological parameters including growth, water status, and phosphorus concentration, and the expression of drought tolerance-related genes in both roots and R. intraradices were recorded. Although mycorrhizal inoculation in either one or both compartments systemically decreased abscisic acid (ABA) content in the whole root system subjected to systemic or local drought stress, we observed local and/or systemic AM effects on root physiological traits and the expression of functional genes in both roots and R. intraradices. Interestingly, the simultaneous increase in the expression of plant genes encoding D-myo-inositol-3-phosphate synthase (IPS) and 14-3-3-like protein GF14 (14-3GF), which were responsible for ABA signal transduction, was found to be involved in the activation of 14-3-3 protein and aquaporins (GintAQPF1 and GintAQPF2) in R. intraradices. These findings suggest that coexpression of IPS and 14-3GF is responsible for the crosstalk between maize and R. intraradices under drought stress, and potentially induces the synergistic actions of the symbiotic partners in enhancing plant drought tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号