首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abiotic stresses are a major cause of crop loss. Ascorbic acid (AsA) promotes stress tolerance by scavenging reactive oxygen species (ROS), which accumulate when plants experience abiotic stress. Although the biosynthesis and metabolism of AsA are well established, the genes that regulate these pathways remain largely unexplored. Here, we report on a novel regulatory gene from tomato (Solanum lycopersicum) named SlZF3 that encodes a Cys2/His2‐type zinc‐finger protein with an EAR repression domain. The expression of SlZF3 was rapidly induced by NaCl treatments. The overexpression of SlZF3 significantly increased the levels of AsA in tomato and Arabidopsis. Consequently, the AsA‐mediated ROS‐scavenging capacity of the SlZF3‐overexpressing plants was increased, which enhanced the salt tolerance of these plants. Protein–protein interaction assays demonstrated that SlZF3 directly binds CSN5B, a key component of the COP9 signalosome. This interaction inhibited the binding of CSN5B to VTC1, a GDP‐mannose pyrophosphorylase that contributes to AsA biosynthesis. We found that the EAR domain promoted the stability of SlZF3 but was not required for the interaction between SlZF3 and CSN5B. Our findings indicate that SlZF3 simultaneously promotes the accumulation of AsA and enhances plant salt‐stress tolerance.  相似文献   

3.
4.
Soil drench treatments with hexanoic acid can effectively protect Arabidopsis plants against Botrytis cinerea through a mechanism based on a stronger and faster accumulation of JA-dependent defenses.Plants impaired in ethylene, salicylic acid, abscisic acid or glutathion pathways showed intact protection by hexanoic acid upon B. cinerea infection. Accordingly, no significant changes in the SA marker gene PR-1 in either the SA or ABA hormone balance were observed in the infected and treated plants. In contrast, the JA signaling pathway showed dramatic changes after hexanoic acid treatment, mainly when the pathogen was present. The impaired JA mutants, jin1-2 and jar1, were unable to display hexanoic acid priming against the necrotroph. In addition, hexanoic acid-treated plants infected with B. cinerea showed priming in the expression of the PDF1.2, PR-4 and VSP1 genes implicated in the JA pathways. Moreover, JA and OPDA levels were primed at early stages by hexanoic acid. Treatments also stimulated increased callose accumulation in response to the pathogen. Although callose accumulation has proved an effective IR mechanism against B. cinerea, it is apparently not essential to express hexanoic acid-induced resistance (HxAc-IR) because the mutant pmr4.1 (callose synthesis defective mutant) is protected by treatment.We recently described how hexanoic acid treatments can protect tomato plants against B. cinerea by stimulating ABA-dependent callose deposition and by priming OPDA and JA-Ile production. We clearly demonstrate here that Hx-IR is a dependent plant species, since this acid protects Arabidopsis plants against the same necrotroph by priming JA-dependent defenses without enhancing callose accumulation.  相似文献   

5.
The role of systemin inPin2 gene expression was analyzed in wild-type plants of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum Mill.), as well as in abscisic acid (ABA)-deficient tomato (sitiens) and potato (droopy) plants. The results showed that systemin initiates Pin2 mRNA accumulation only in wildtype tomato and potato plants. As in the situation after mechanical wounding,Pin2 gene expression in ABA-deficient plants was not activated by systemin. Increased endogenous levels of jasmonic acid (JA) and accumulation of Pin2 mRNA were observed following treatment with α-linolenic acid, the precursor of JA biosynthesis, suggesting that these ABA mutants still have the capability to synthesize de novo JA. Measurement of endogenous levels of ABA and JA showed that systemin leads to an increase of both phytohormones (ABA and JA) only in wild-type but not in ABA-deficient plants.  相似文献   

6.
It is well-known from the model dicotyledonous plants, Arabidopsis and tomato, that jasmonates (JAs) act as defense hormones in planta due to their potent ability to mediate defensive responses against insect/pathogen attacks or harsh environmental conditions. JA is also required for various developmental processes such as male fertility, seed maturation, root extension, and leaf senescence. In our recently published Plant Cell paper, the multiple roles of JA in the monocotyledonous agro-economically important model plant, maize, were investigated by comprehensive analysis of JA-deficient double mutant disrupted in the two oxophytodienoate reductase genes, OPR7 and OPR8. These two genes are the closest orthologs of the Arabidopsis JA-producing OPR3 and are the only maize OPRs required for JA biosynthesis. With this mutant, we previously showed that JA is essential for both male and female reproductive development, and required for the regulation of brace root pigmentation, leaf senescence, and defense against oomycete Pythium aristosporum, and beet armyworm (Spodoptera exigua). In this addendum, we expanded the investigation into the function of JA in elongation of sheaths, leaves, and roots, and its involvement in photomorphogenesis of seedlings.  相似文献   

7.
As a vital antioxidant, L-ascorbic acid (AsA) affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS) as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.  相似文献   

8.
Plant stress hormones, such as jasmonates (JAs) and ethylene (ET) are essential in plant defence against stress conditions. JAs are used in cosmetics and food flavouring, and the recently demonstrated anti-cancer activity of JAs highlights their potential in health protection. It reinforces the need for a better understanding of biosynthetic regulation of JAs. Which mechanisms are involved in the regulation of the biosynthesis of JAs and ET? Production of stress hormones is induced in plants after wounding or herbivore attack. ET is a gaseous compound and plant JAs are oxylipins structurally similar to prostaglandins that are induced upon inflammation or injury in mammals. Wounding activates protein phosphorylation cascades involving mitogen-activated protein kinases (MAPKs). MAPKs regulate ET production. The induction of JA biosynthesis was suggested to require MAPK activation; however the defined roles of MAPKs in JA production remain unclear. Here we will highlight the most recent findings suggesting the regulation of JA biosynthesis and ethylene production by stress activated MAPKs and phosphatases that inactivate these MAPKs.  相似文献   

9.
Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.  相似文献   

10.
Jasmonates (JAs) are a class of oxylipin compounds that play diverse roles in plant defense and development. The F-box protein coronatine insensitive1 (COI1) plays a crucial role in the JA signaling pathway. To determine whether COI1 binds directly to jasmonates, three biotin-tagged photoaffinity probes for JAs, a jasmonic acid photoaffinity probe (PAJA), a JAIle photoaffinity probe (PAJAIle), and a coronatine photoaffinity probe (PACOR), were designed and synthesized based on analysis of JA structure–activity relationships and molecular modeling of the interaction between COI1 and JAs. Among them, PACOR exhibited the most significant biological activity in inhibiting root growth, promoting accumulation of JA-responsive proteins, and triggering COI1–JAZ1 interaction in Arabidopsis seedlings. PACOR is an effective tool for elucidating the interaction between COI1 and JA.  相似文献   

11.
12.
13.
Sphingolipids are structural components of the lipid bilayer that acts as signaling molecules in many cellular processes, including cell death. Ceramides, key intermediates in sphingolipid metabolism, are phosphorylated by the ceramide kinase ACCELERATED CELL DEATH5 (ACD5). The loss of ACD5 function leads to ceramide accumulation and spontaneous cell death. Here, we report that the jasmonate (JA) pathway is activated in the Arabidopsis (Arabidopsis thaliana) acd5 mutant and that methyl JA treatment accelerates ceramide accumulation and cell death in acd5. Moreover, the double mutants of acd5 with jasmonate resistant1-1 and coronatine insensitive1-2 exhibited delayed cell death, suggesting that the JA pathway is involved in acd5-mediated cell death. Quantitative sphingolipid profiling of plants treated with methyl JA indicated that JAs influence sphingolipid metabolism by increasing the levels of ceramides and hydroxyceramides, but this pathway is dramatically attenuated by mutations affecting JA pathway proteins. Furthermore, we showed that JAs regulate the expression of genes encoding enzymes in ceramide metabolism. Together, our findings show that JAs accelerate cell death in acd5 mutants, possibly by modulating sphingolipid metabolism and increasing ceramide levels.  相似文献   

14.
Low temperature is an important limiting factor in tomato production in early spring and winter. 5-Aminolevulinic acid (ALA) protects crops against varied abiotic stresses. However, the methodology to precisely use ALA to increase the cold tolerance in tomatoes is still not fully known. We therefore explored the effects of ALA concentration, application period, and dose on membrane lipid peroxidation, antioxidation, photosynthesis, and plant growth in different tomato cultivars (Zhongza No. 9, ZZ and Jinpeng No. 1, JP) at low-temperature stress. Results revealed that low temperature caused plants oxidative damage and growth inhibition in both ZZ and JP plants. The ROS (hydrogen peroxide and superoxide anion) accumulation and membrane lipid peroxidation (malondialdehyde content and the relative electrical conductivity) were more remarkable in JP plants than ZZ plants under low temperature. The catalase (CAT) and ascorbate–glutathione cycle (AsA–GSH) induced by ALA reliably eliminated excessive ROS to maintain the redox balance in both tomato cultivars under low-temperature stress. In AsA–GSH cycle, AsA regeneration was mainly catalyzed by dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR), from dehydroascorbate (DHA) to AsA and monodehydroascorbate (MDA) to AsA in ZZ plants, while AsA regeneration in JP plants was mostly catalyzed by DHAR, from DHA to AsA. The ALA optimum concentration was 25 mg L?1. The tomato plants with five true leaves pretreated with 6 mL ALA were more effective than spraying after cold occurred. In conclusion, the two tomato varieties illustrated different capacities to bear low-temperature stress. And ZZ plants were more tolerant to low temperature than JP plants. Precise ALA pretreatment observably alleviated low temperature induced-damage via CAT and AsA–GSH cycle in both cultivars. The regeneration of AsA in AsA–GSH cycle may be more comprehensive in ZZ plants than JP plants, to better tolerate low-temperature stress.  相似文献   

15.
16.
Mitogen-activated protein kinase (MAPK) plays a central role in controlling a vast array of plant biochemical and physiological processes. It is regulated by a characteristic phosphorelay system in which a series of three kinases phosphorylate and activate each other. Over the past years, several plants MAPKs have been identified and characterized. Of these, rice OsSIPK (Salicylic acid (SA)-Induced Protein Kinase) and its orthologs in other plants are of particular interest. A large body of evidence demonstrates the involvement of SIPKs in fine-tuned regulation of the plant responses to ozone, wounding, SA, and jasmonic acid (JA). Interestingly, their function appears to be conserved across reference plants, such as rice, tobacco, and Arabidopsis. In this minireview, we discuss the recent progress on rice OsSIPK and its orthologs as a “central master switch” for mediating plant responses against ozone, wounding, and JA as examples.  相似文献   

17.
Determining the mobile signal used by plants to defend against biotic and abiotic stresses has proved elusive, but jasmonic acid (JA) and its derivatives appear to be involved. Using deuterium-labeled analogs, we investigated the distal transport of JA and jasmonoyl-isoleucine (JA-Ile) in response to leaf wounding in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum) plants. We recovered [(2)H(2)-2]JA ([(2)H(2)]JA) and [(2)H(3)-12]JA-Ile ([(2)H(3)]JA-Ile) in distal leaves of N. tabacum and S. lycopersicum after treating wounded leaves with [(2)H(2)]JA or [(2)H(3)]JA-Ile. We found that JA-Ile had a greater mobility than JA, despite its lower polarity, and that application of exogenous JA-Ile to wounded leaves of N. tabacum led to a higher accumulation of JA and JA-Ile in distal leaves compared with wounded control plants. We also found that exudates from the stem of S. lycopersicum plants with damaged leaflets contained JA and JA-Ile at higher levels than in an undamaged plant, and a significant difference in the levels of JA-Ile was observed 30 min after wounding. Based on these results, it was found that JA-Ile is a transportable compound, which suggests that JA-Ile is a signaling cue involved in the resistance to biotic and abiotic stresses in plants.  相似文献   

18.
To test whether the response to electrical current and heat treatment is due to the same signaling pathway that mediates mechanical wounding, we analyzed the effect of electric-current application and localized burning on proteinase inhibitor II (Pin2) gene expression in both wild-type and abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) and potato (Solanum phureja) plants. Electric-current application and localized burning led to the accumulation of Pin2 mRNA in potato and tomato wild-type plants. Among the treatments tested, only localized burning of the leaves led to an accumulation of Pin2 mRNA in the ABA-deficient plants. Electric-current application, like mechanical injury, was able to initiate ABA and jasmonic acid (JA) accumulation in wild-type but not in ABA-deficient plants. In contrast, heat treatment led to an accumulation of JA in both wild-type and ABA-deficient plants. Inhibition of JA biosynthesis by aspirin blocked the heat-induced Pin2 gene expression in tomato wild-type leaves. These results suggest that electric current, similar to mechanical wounding, requires the presence of ABA to induce Pin2 gene expression. Conversely, burning of the leaves activates Pin2 gene expression by directly triggering the biosynthesis of JA by an alternative pathway that is independent of endogenous ABA levels.  相似文献   

19.
Little is known regarding production and function of endogenous jasmonates (JAs) in root nodules of soybean plants inoculated with Bradyrhizobium japonicum. We investigated (1) production of jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) in roots of control and inoculated plants and in isolated nodules; (2) correlations between JAs levels, nodule number, and plant growth during the symbiotic process; and (3) effects of exogenous JA and OPDA on nodule cell number and size. In roots of control plants, JA and OPDA levels reached a maximum at day 18 after inoculation; OPDA level was 1.24 times that of JA. In roots of inoculated plants, OPDA peaked at day 15, whereas JA level did not change appreciably. Shoot dry matter of inoculated plants was higher than that of control at day 21. Chlorophyll a decreased more abruptly in control plants than in inoculated plants, whereas b decreased gradually in both cases. Exogenous JA or OPDA changed number and size of nodule central cells and peripheral cells. Findings from this and previous studies suggest that increased levels of JA and OPDA in control plants are related to senescence induced by nutritional stress. OPDA accumulation in nodulated roots suggests its involvement in "autoregulation of nodulation."  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号