首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Wilkie TM  Kinch L 《Current biology : CB》2005,15(20):R843-R854
Large G protein alpha subunits and their attendant regulators of G-protein signaling (RGS) proteins control both intercellular signaling and asymmetric cell divisions by distinct pathways. The classical pathway, found throughout higher eukaryotic organisms, mediates intercellular communication via hormone binding to G-protein-coupled receptors (GPCRs). Recent studies have led to the discovery of GPCR-independent activation of Galpha subunits by the guanine nucleotide exchange factor RIC-8 in both asymmetric cell division and synaptic vesicle priming in metazoan organisms. Protein-protein interactions and protein function in each pathway are driven through the cycle of GTP binding and hydrolysis by the Galpha subunit. This review builds a conceptual framework for understanding RIC-8-mediated pathways by comparison with the mechanism of classical G-protein activation and inhibition in GPCR signaling.  相似文献   

2.
3.
4.
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits   总被引:1,自引:0,他引:1  
The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM) cell-surface receptors. In 1996, we and others identified a superfamily of "regulator of G-protein signaling" (RGS) proteins that accelerate the rate of GTP hydrolysis by Galpha subunits (dubbed GTPase-accelerating protein or "GAP" activity). This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Galpha subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs) that serve as Galpha effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Galpha and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Galpha subunits to 7TM receptors in the absence of conventional Gbetagamma dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Galpha AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Galpha subunits: namely, the guanine nucleotide dissociation inhibitor (GDI) activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF) activity of Ric8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Galpha subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal segregation.  相似文献   

5.
6.
Signalling by G proteins is controlled by the regulator of G-protein signalling (RGS) proteins that accelerate the GTPase activity of Galpha subunits and act in a G-protein-coupled receptor (GPCR)-specific manner. The conserved RGS domain accelerates the G subunit GTPase activity, whereas the variable amino-terminal domain participates in GPCR recognition. How receptor recognition is achieved is not known. Here, we show that the scaffold protein spinophilin (SPL), which binds the third intracellular loop (3iL) of several GPCRs, binds the N-terminal domain of RGS2. SPL also binds RGS1, RGS4, RGS16 and GAIP. When expressed in Xenopus laevis oocytes, SPL markedly increased inhibition of alpha-adrenergic receptor (alphaAR) Ca2+ signalling by RGS2. Notably, the constitutively active mutant alphaAR(A293E) (the mutation being in the 3iL) did not bind SPL and was relatively resistant to inhibition by RGS2. Use of betaAR-alphaAR chimaeras identified the 288REKKAA293 sequence as essential for the binding of SPL and inhibition of Ca2+ signalling by RGS2. Furthermore, alphaAR-evoked Ca2+ signalling is less sensitive to inhibition by SPL in rgs2-/- cells and less sensitive to inhibition by RGS2 in spl-/- cells. These findings provide a general mechanism by which RGS proteins recognize GPCRs to confer signalling specificity.  相似文献   

7.
Regulators of G-protein signaling (RGS proteins) comprise over 20 different proteins that have been classified into subfamilies on the basis of structural homology. The RZ/A family includes RGSZ2/RGS17 (the most recently discovered member of this family), GAIP/RGS19, RGSZ1/RGS20, and the RGSZ1 variant Ret-RGS. The RGS proteins are GTPase activating proteins (GAPs) that turn off G-proteins and thus negatively regulate the signaling of G-protein coupled receptors (GPCRs). In addition, some RZ/A family RGS proteins are able to modify signaling through interactions with adapter proteins (such as GIPC and GIPN). The RZ/A proteins have a simple structure that includes a conserved amino-terminal cysteine string motif, RGS box and short carboxyl-terminal, which confer GAP activity (RGS box) and the ability to undergo covalent modification and interact with other proteins (amino-terminal). This review focuses on RGS17 and its RZ/A sibling proteins and discusses the similarities and differences among these proteins in terms of their palmitoylation, phosphorylation, intracellular localization and interactions with GPCRs and adapter proteins. The specificity of these RGS protein for different Galpha proteins and receptors, and the consequences for signaling are discussed. The tissue and brain distribution, and the evolving understanding of the roles of this family of RGS proteins in receptor signaling and brain function are highlighted.  相似文献   

8.
Lysophosphatidic acid is a bioactive phospholipid that is produced by and stimulates ovarian cancer cells, promoting proliferation, migration, invasion, and survival. Effects of LPA are mediated by cell surface G-protein coupled receptors (GPCRs) that activate multiple heterotrimeric G-proteins. G-proteins are deactivated by Regulator of G-protein Signaling (RGS) proteins. This led us to hypothesize that RGS proteins may regulate G-protein signaling pathways initiated by LPA in ovarian cancer cells. To determine the effect of endogenous RGS proteins on LPA signaling in ovarian cancer cells, we compared LPA activity in SKOV-3 ovarian cancer cells expressing G(i) subunit constructs that are either insensitive to RGS protein regulation (RGSi) or their RGS wild-type (RGSwt) counterparts. Both forms of the G-protein contained a point mutation rendering them insensitive to inhibition with pertussis toxin, and cells were treated with pertussis toxin prior to experiments to eliminate endogenous G(i/o) signaling. The potency and efficacy of LPA-mediated inhibition of forskolin-stimulated adenylyl cyclase activity was enhanced in cells expressing RGSi G(i) proteins as compared to RGSwt G(i). We further showed that LPA signaling that is subject to RGS regulation terminates much faster than signaling thru RGS insensitive G-proteins. Finally, LPA-stimulated SKOV-3 cell migration, as measured in a wound-induced migration assay, was enhanced in cells expressing Galpha(i2) RGSi as compared to cells expressing Galpha(i2) RGSwt, suggesting that endogenous RGS proteins in ovarian cancer cells normally attenuate this LPA effect. These data establish RGS proteins as novel regulators of LPA signaling in ovarian cancer cells.  相似文献   

9.
Tripartite G-protein-coupled receptors (GPCRs) represent one of the largest groups of signal transducers, transmitting signals from hormones, neuropeptides, odorants, food and light. Ligand-bound receptors catalyse GDP/GTP exchange on the G-protein alpha-subunit (Galpha), leading to alpha-GTP separation from the betagamma subunits and pathway activation. Activating mutations in the receptors or G proteins underlie many human diseases, including some cancers, dwarfism and premature puberty. Regulators of G-protein signalling (RGS proteins) are known to modulate the level and duration of ligand-induced signalling by accelerating the intrinsic GTPase activity of the Galpha subunit, and thus reformation of the inactive GDP-bound Galpha. Here we find that even in the absence of receptor, mutation of the RGS family member Sst2 (refs 6-9) permits spontaneous activation of the G-protein-coupled mating pathway in Saccharomyces cerevisiae at levels normally seen only in the presence of ligand. Our work demonstrates the occurrence of spontaneous tripartite G-protein signalling in vivo and identifies a requirement for RGS proteins in preventing such receptor-independent activation.  相似文献   

10.
Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits speeding deactivation. Galpha deactivation kinetics mediated by RGS are too fast to be directly studied using conventional radiochemical methods. We describe a stopped-flow spectroscopic approach to visualize these rapid kinetics by measuring the intrinsic tryptophan fluorescence decrease of Galpha accompanying GTP hydrolysis and Galpha deactivation on the millisecond time scale. Basal k(cat) values for Galpha(o), Galpha(i1), and Galpha(i2) at 20 degrees C were similar (0.025-0.033 s(-1)). Glutathione S-transferase fusion proteins containing RGS4 and an RGS7 box domain (amino acids 305-453) enhanced the rate of Galpha deactivation in a manner linear with RGS concentration. RGS4-stimulated rates could be measured up to 5 s(-1) at 3 microm, giving a catalytic efficiency of 1.7-2.8 x 10(6) m(-1) s(-1) for all three Galpha subunits. In contrast, RGS7 showed catalytic efficiencies of 0.44, 0.10, and 0.02 x 10(6) m(-1) s(-1) toward Galpha(o), Galpha(i2), and Galpha(i1), respectively. Thus RGS7 is a weaker GTPase activating protein than RGS4 toward all Galpha subunits tested, but it is specific for Galpha(o) over Galpha(i1) or Galpha(i2). Furthermore, the specificity of RGS7 for Galpha(o) does not depend on N- or C-terminal extensions or a Gbeta(5) subunit but resides in the RGS domain itself.  相似文献   

11.
Regulator of G-protein signaling 3 (RGS3) enhances the intrinsic rate at which Galpha(i) and Galpha(q) hydrolyze GTP to GDP, thereby limiting the duration in which GTP-Galpha(i) and GTP-Galpha(q) can activate effectors. Since GDP-Galpha subunits rapidly combine with free Gbetagamma subunits to reform inactive heterotrimeric G-proteins, RGS3 and other RGS proteins may also reduce the amount of Gbetagamma subunits available for effector interactions. Although RGS6, RGS7, and RGS11 bind Gbeta(5) in the absence of a Ggamma subunit, RGS proteins are not known to directly influence Gbetagamma signaling. Here we show that RGS3 binds Gbeta(1)gamma(2) subunits and limits their ability to trigger the production of inositol phosphates and the activation of Akt and mitogen-activated protein kinase. Co-expression of RGS3 with Gbeta(1)gamma(2) inhibits Gbeta(1)gamma(2)-induced inositol phosphate production and Akt activation in COS-7 cells and mitogen-activated protein kinase activation in HEK 293 cells. The inhibition of Gbeta(1)gamma(2) signaling does not require an intact RGS domain but depends upon two regions in RGS3 located between acids 313 and 390 and between 391 and 458. Several other RGS proteins do not affect Gbeta(1)gamma(2) signaling in these assays. Consistent with the in vivo results, RGS3 inhibits Gbetagamma-mediated activation of phospholipase Cbeta in vitro. Thus, RGS3 may limit Gbetagamma signaling not only by virtue of its GTPase-activating protein activity for Galpha subunits, but also by directly interfering with the activation of effectors.  相似文献   

12.
Regulators of G-protein signalling play a crucial role in controlling the degree of heterotrimeric G-protein signalling. In addition to the previously studied flbA, we have identified three genes (rgsA, rgsB and rgsC) encoding putative RGS proteins in the genome of Aspergillus nidulans. Characterization of the rgsA gene revealed that RgsA downregulates pigment production and conidial germination, but stimulates asexual sporulation (conidiation). Deletion of rgsA (DeltargsA) resulted in reduced colony size with increased aerial hyphae, elevated accumulation of brown pigments as well as enhanced tolerance of conidia and vegetative hyphae against oxidative and thermal stress. Moreover, DeltargsA resulted in conidial germination in the absence of a carbon source. Deletion of both flbA and rgsA resulted in an additive phenotype, suggesting that the G-protein pathways controlled by FlbA and RgsA are different. Morphological and metabolic alterations caused by DeltargsA were suppressed by deletion of ganB encoding a Galpha subunit, indicating that the primary role of RgsA is to control negatively GanB-mediated signalling. Overexpression of rgsA caused inappropriate conidiation in liquid submerged culture, supporting the idea that GanB signalling represses conidiation. Our findings define a second and specific RGS-Galpha pair in A. nidulans, which may govern upstream regulation of fungal cellular responses to environmental changes.  相似文献   

13.
14.
G蛋白信号调节因子的结构分类和功能   总被引:2,自引:0,他引:2  
Du YS  Huang BR 《生理科学进展》2005,36(3):215-219
G蛋白信号调节因子是能够直接与激活的Gα亚基结合,显著刺激Gα亚基上的GTP酶活性,加速GTP水解,从而灭活或终止G蛋白信号的一组分子大小各异的多功能蛋白质家族。它们都共同拥有一个130个氨基酸的保守的RGS结构域,其功能是结合激活的Gα亚基,负调节G蛋白信号。许多RGS蛋白还拥有非RGS结构域,能够结合其它信号蛋白,从而整合和调节G蛋白信号之间以及G蛋白和其它信号系统之间的关系。  相似文献   

15.
Regulators of G-protein signaling (RGS proteins) negatively regulate heterotrimeric G-protein cascades that enable eukaryotic cells to perceive and respond to external stimuli. The rice-blast fungus Magnaporthe grisea forms specialized infection structures called appressoria in response to inductive surface cues. We isolated Magnaporthe RGS1 in a screen for mutants that form precocious appressoria on non-inductive surfaces. We report that a thigmotropic cue is necessary for initiating appressoria and for accumulating cAMP. Similar to an RGS1-deletion strain, magA(G187S) (RGS-insensitive Galpha(s)) and magA(Q208L) (GTPase-dead) mutants accumulated excessive cAMP and elaborated appressoria on non-inductive surfaces, suggesting that Rgs1 regulates MagA during pathogenesis. Rgs1 was also found to negatively regulate the Galpha(i) subunit MagB during asexual development. Deficiency of MAGB suppressed the hyper-conidiation defect in RGS1-deletion strain, whereas magB(G183S) and magB(Q204L) mutants produced more conidia, similar to the RGS1-deletion strain. Rgs1 physically interacted with GDP.AlF(4)(-)-activated forms of MagA, MagB and MagC (a Galpha(II) subunit). Thus, Rgs1 serves as a negative regulator of all Galpha subunits in Magnaporthe and controls important developmental events during asexual and pathogenic development.  相似文献   

16.
Major insights into sexual development and cryptic sexuality within filamentous fungi have been gained from investigations using Aspergillus species. Here, an overview is first given into sexual morphogenesis in the aspergilli, describing the different types of sexual structures formed and how their production is influenced by a variety of environmental and nutritional factors. It is argued that the formation of cleistothecia and accessory tissues, such as Hülle cells and sclerotia, should be viewed as two independent but co-ordinated developmental pathways. Next, a comprehensive survey of over 75 genes associated with sexual reproduction in the aspergilli is presented, including genes relating to mating and the development of cleistothecia, sclerotia and ascospores. Most of these genes have been identified from studies involving the homothallic Aspergillus nidulans, but an increasing number of studies have now in addition characterized 'sex-related' genes from the heterothallic species Aspergillus fumigatus and Aspergillus flavus. A schematic developmental genetic network is proposed showing the inter-relatedness between these genes. Finally, the discovery of sexual reproduction in certain Aspergillus species that were formerly considered to be strictly asexual is reviewed, and the importance of these findings for cryptic sexuality in the aspergilli as a whole is discussed.  相似文献   

17.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

18.
Regulators of G-protein signaling (RGS) proteins play a central role in modulating signaling via G-protein coupled receptors (GPCRs). Specifically, RGS proteins bind to activated Gα subunits in G-proteins, accelerate the GTP hydrolysis, and thereby rapidly dampen GPCR signaling. Therefore, covalent molecules targeting conserved cysteine residues among RGS proteins have emerged as potential candidates to inhibit the RGS/Gα protein-protein interaction and enhance GPCR signaling. Although these inhibitors bind to conserved cysteine residues among RGS proteins, we have previously suggested [J. Am. Chem. Soc. 2018;140:3454–3460] that their potencies and specificities are related to differential protein dynamics among RGS proteins. Using data from all-atom molecular dynamics simulations, we reveal these differences in dynamics of RGS proteins by partitioning the protein structural space into a network of communities that allow allosteric signals to propagate along unique pathways originating at inhibitor binding sites and terminating at the RGS/Gα protein-protein interface.  相似文献   

19.
Regulators of G-protein signaling (RGS) proteins modulate signaling through heterotrimeric G-proteins. They act to enhance the intrinsic GTPase activity of the Galpha subunit but paradoxically have also been shown to enhance receptor-stimulated activation. To study this paradox, we used a G-protein gated K+ channel to report the dynamics of the G-protein cycle and fluorescence resonance energy transfer techniques with cyan and yellow fluorescent protein-tagged proteins to report physical interaction. Our data show that the acceleration of the activation kinetics is dissociated from deactivation kinetics and dependent on receptor and RGS type, G-protein isoform, and RGS expression levels. By using fluorescently tagged proteins, fluorescence resonance energy transfer microscopy showed a stable physical interaction between the G-protein alpha subunit and RGS (RGS8 and RGS7) that is independent of the functional state of the G-protein. RGS8 does not directly interact with G-protein-coupled receptors. Our data show participation of the RGS in the ternary complex between agonist-receptor and G-protein to form a "quaternary complex." Thus we propose a novel model for the action of RGS proteins in the G-protein cycle in which the RGS protein appears to enhance the "kinetic efficacy" of the ternary complex, by direct association with the G-protein alpha subunit.  相似文献   

20.
Regulators of G protein signaling (RGS proteins) bind directly to activated Galpha subunits to inhibit their signaling. However, recent findings show that RGS proteins selectively regulate signaling by certain G protein-coupled receptors (GPCRs) in cells, irrespective of the coupled G protein. New studies support an emerging model that suggests RGS proteins utilize both direct and indirect mechanisms to form stable functional pairs with preferred GPCRs to selectively modulate the signaling functions of those receptors and linked G proteins. Here, we discuss these findings and their implications for established models of GPCR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号