首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
目的 观察亚抑菌浓度(亚-MIC)穿心莲内酯及其与红霉素联用对表皮葡萄球菌生物膜形成的影响.方法 连续稀释法测定穿心莲内酯和红霉素对表皮葡萄球菌的MIC;棋盘格法测定穿心莲内酯和红霉素联用对表皮葡萄球菌悬浮菌的作用;体外构建表皮葡萄球菌生物膜,XTT减低法评价亚-MIC穿心莲内酯及与红霉素联用对表皮葡萄球菌生物膜内细菌代谢及初始黏附能力的影响,扫描电镜观察用药后表皮葡萄球菌形态和生物膜结构改变.结果 穿心莲内酯对表皮葡萄球菌悬浮菌的MIC大于1000 mg/L,穿心莲内酯和红霉素联用对表皮葡萄球菌悬浮菌的FIC指数(联合抑菌分数)>2;亚抑菌浓度穿心莲内酯对表皮葡萄球菌生物膜黏附及膜内菌代谢均有抑制作用;穿心莲内酯和红霉素联用对表皮葡萄球菌的黏附能力的影响表现为协同作用,对悬浮菌和膜内菌代谢作用表现为拮抗.结论 亚抑菌浓度穿心莲内酯对表皮葡萄球菌生物膜黏附及膜内菌代谢均有抑制作用;穿心莲内酯和红霉素联用对表皮葡萄球菌悬浮菌及膜内菌代谢存在拮抗,提示临床治疗表皮葡萄球菌感染时应避免同时使用这两种药物.  相似文献   

2.
目的通过阴离子表面活性剂十二烷基苯磺酸钠针对表皮葡萄球菌生物被膜菌黏附抑制作用的研究,为临床抗表皮葡萄球菌生物被膜菌引起的相关感染探索新的研究方向和可能的治疗途径。方法以红霉素为阳性对照,利用XTT减低法评价十二烷基苯磺酸钠对表皮葡萄球菌初始黏附的影响。结果十二烷基苯磺酸钠在1 000、100mg/L浓度下对表皮葡萄球菌初始黏附均有抑制作用;以浓度为1 000mg/L十二烷基苯磺酸钠对实验材料进行预处理,对表皮葡萄球菌初始黏附有明显抑制作用。结论阴离子表面活性剂十二烷基苯磺酸钠在特定浓度下对表皮葡萄球菌产生物被膜菌的初始黏附有抑制作用。  相似文献   

3.
目的:探讨中药有效成分黄芩苷( baicalin,BA)联合氟康唑( fluconazole,FLC)对白念珠菌( Candida albicans,C. albicans)生物膜的抑制作用。方法通过棋盘法考察BA联合FLC对白念珠菌浮游菌与生物膜的部分抑菌浓度指数( FI?CI);通过时间?杀菌曲线检测两药联合对白念珠菌标准株(C.albicans SC5314)的杀菌作用;以XTT减低法和干重法检测两药联合对白念珠菌SC5314生物膜代谢及生物量的影响;采用扫描电镜( Scanning electron microscopy,SEM)和激光共聚焦显微镜( Confocal laser scanning microscopy,CLSM)观察两药联合对白念珠菌SC5314生物膜形态结构的影响;以水?烃法检测两药联合对白念珠菌SC5314生物膜细胞表面疏水性( cell surface hydrophobicity,CSH)的影响;通过实时荧光定量PCR ( quan?titative real time PCR,qRT?PCR)检测两药联合对白念珠菌生物膜和CSH相关基因表达的影响。结果黄芩苷与氟康唑联用抗白念珠菌浮游菌的FICI介于0.28~0.75之间,对生物膜的FICI介于0.16~0.5之间,表现为协同作用;SEM和CLSM在生物膜结构上验证了两药的协同效果;两药联合可降低生物膜表面疏水性,以及使ALS1、ALS3、EAP1、SUN41和CSH1分别下调6%、51%、24%、13%和39%。结论黄芩苷具有协同氟康唑抗白念珠菌生物膜作用。  相似文献   

4.
苦参碱对表皮葡萄球菌生物被膜作用初探   总被引:2,自引:0,他引:2  
通过中药有效成分苦参碱对表皮葡萄球菌生物被膜抑制作用的研究,为表皮葡萄球菌生物被膜引起的相关感染提供新的治疗途径。利用XTT减低法评价苦参碱对表皮葡萄球菌初始粘附及生物被膜内细菌代谢的影响,镜下观察该药对表皮葡萄球菌生物被膜的形态学影响。结果表明:苦参碱对表皮葡萄球菌生物被膜菌的SMIC50和SMIC80分别为62.5 mg/L和500 mg/L;1 000 mg/L浓度的苦参碱对表皮葡萄球菌早期粘附有抑制作用;250 mg/L浓度的苦参碱对表皮葡萄球菌生物被膜的形态有显著影响。因此可见,苦参碱对表皮葡萄球菌生物被膜的形成与粘附均有抑制作用。  相似文献   

5.
[目的] 探讨中药单体黄芩苷对嗜水气单胞菌在体内外生长及生物膜形成的影响。[方法] 体外实验中,利用牛津杯法检测抑菌圈直径,结晶紫法检测生物膜的形成,通过泳动实验检测黄芩苷对嗜水气单胞菌运动性的影响,紫外吸收法检测细胞膜完整性,用透射电镜技术观察黄芩苷对细菌形态的影响。体内实验利用草鱼为对象检测黄芩苷对嗜水气单胞菌增殖的影响。[结果] 黄芩苷在体外对嗜水气单胞菌有明显的抑菌效果,通过对生物膜的研究发现黄芩苷对生物膜形成具有抑制作用,并同时抑制其运动性。同时黄芩苷可以破坏细胞结构,并增加了细胞膜通透性。体内实验结果显示黄芩苷对嗜水气单胞菌具有清除作用,且具有一定的浓度依赖性。[结论] 黄芩苷在体内外均具有抑制嗜水气单胞菌增殖的作用,有望在水产养殖病害防治工作中得到应用。  相似文献   

6.
目的研究金诺芬对表皮葡萄球菌及其生物膜的作用。方法利用微量稀释法药敏试验检测金诺芬对表皮葡萄球菌浮游菌生长的影响,并利用结晶紫染色和激光共聚焦显微镜观察金诺芬对表皮葡萄球菌生物膜形成的影响。结果金诺芬对表皮葡萄球菌的MIC和MBC分别为0.125~0.250μg/mL和2.000~4.000μg/mL。同时,4μg/mL金诺芬还能显著抑制表皮葡萄球菌标准菌株和临床菌株生物膜的形成(P0.05)。通过激光共聚焦显微镜观察发现金诺芬能有效抑制生物膜的形成,降低生物膜的聚集,并增加死亡细菌的比例。结论金诺芬能显著抑制表皮葡萄球菌浮游菌的增殖和生物膜的形成。  相似文献   

7.
【目的】分析黄芩苷对阪崎克罗诺杆菌生物膜的抑制作用。【方法】采用XTT法评价黄芩苷对阪崎克罗诺杆菌起始粘附性及生物膜内细菌细胞活性的影响,并且采用荧光实时定量PCR(Quantitative real-time PCR,q RT-PCR)检测了阪崎克罗诺杆菌生物膜相关基因glp Q、nlp D、gsi B、deo B、lux S、sdi A的表达水平。【结果】黄芩苷对阪崎克罗诺杆菌的抑制效果呈剂量依赖型。黄芩苷对阪崎克罗诺杆菌的MIC80值为1 024 mg/L,该浓度的黄芩苷对阪崎克罗诺杆菌BAA-894和IQCC10423菌株生物膜的抑制率分别为83.7%和53.2%。浓度为2 048 mg/L的黄芩苷能够通过降低阪崎克罗诺杆菌的粘附性来抑制新生物膜的形成。另外,实时定量PCR结果表明黄芩苷可能通过下调阪崎克罗诺杆菌生物膜相关基因的表达来抑制其生物膜的形成。【结论】黄芩苷有可能被作为抗菌剂以预防和灭活阪崎克罗诺杆菌生物膜。  相似文献   

8.
【背景】随着医用内置物的广泛使用,由表皮葡萄球菌生物被膜导致的医院获得性感染不断增多,目前鲜见关于表面活性剂针对表皮葡萄球菌生物被膜作用的报道。【目的】通过研究阴离子型表面活性剂十二烷基苯磺酸钠(sodium dodecyl benzene sulfonate,SDBS)分别对ATCC 35984 (产膜表皮葡萄球菌标准株)生物被膜的清除、生物被膜内细菌代谢和形成生物被膜的关键物质多糖胞间黏附素(polysaccharide intercellular adhesion,PIA)产生的影响,为临床使用SDBS防治由表皮葡萄球菌生物被膜引起的相关感染提供可靠的理论及实践依据。【方法】利用XTT减低法,评价SDBS对ATCC 35984已形成生物被膜的清除效率及对生物被膜内细菌代谢的影响;激光共聚焦显微镜观察SDBS对生物被膜作用的效果;采用刚果红培养基观察SDBS对PIA产生的影响。【结果】浓度为256、128、64、32、16 mg/L的SDBS在作用6、12、24 h时,对ATCC 35984的生物被膜均有显著的清除效率(P0.01);浓度为32 mg/L时对生物被膜内细菌的代谢有显著抑制作用(P0.05),并随作用浓度的增加而增强;激光共聚焦显微镜观察显示256、128、64 mg/L的SDBS对生物被膜的清除效率较为理想,SDBS浓度为64、32 mg/L时对PIA的形成无明显抑制作用。【结论】SDBS对表皮葡萄球菌生物被膜内细菌的代谢有显著抑制作用,对生物被膜形态结构有显著破坏作用。  相似文献   

9.
五倍子水煎剂对表皮葡萄球菌生物膜抑制的研究   总被引:1,自引:0,他引:1  
通过五倍子水煎剂对表皮葡萄球菌MIC测定和生物膜形成干预的研究,为表皮葡萄球菌引起感染提供新的治疗途径。用微量肉汤稀释法分别测定五倍子水煎剂对表皮葡萄球菌的MIC;刚果红及刚果红红霉素、五倍子水煎剂琼脂平板测定表皮葡萄球菌PIA生成与抑制;五倍子水煎剂、红霉素干预表皮葡萄球菌生物膜形成,于光镜和电镜下观察其生物膜形态。134株表皮葡萄球菌五倍子水煎剂的MIC50为0.488 mg/mL,MIC90为0.977 mg/mL。134株表皮葡萄球菌中有50株为PIA阳性,PIA阳性的50株菌全部产生生物膜,红霉素对表皮葡萄球菌生物膜形成有抑制,而五倍子水煎剂则无。表皮葡萄球菌PIA的相互作用在其生物膜的生成中起主要作用;五倍子水煎剂对表皮葡萄球菌生长有明显的抑制但对生物膜形成无干预作用。  相似文献   

10.
本研究利用体外培养人体肠道菌转化黄芩苷,探索转化方法及模型;用醇沉法提取了黄芩苷转化酶,即β-D-葡萄糖醛酸苷酶,并探讨了酶促影响因素;通过高效液相色谱检测产物黄芩素。经实验确定,黄芩苷转化培养液经超声波处理后,在转化液中有黄芩素检出。实验得知,转化酶为胞内酶,该酶的最适反应温度为55℃,最适pH为6.0,Ca2+、Mg2+和Cu2+对酶促反应具有促进作用,而Fe2+则具有抑制作用,Zn2+浓度在l mmol/L时起促进作用,在5 mmol/L时起抑制作用。  相似文献   

11.
The ability of surfactants obtained from three Lactobacillus acidophilus strains to inhibit Staphylococcus aureus and S. epidermidis biofilms was evaluated. Their influence was determined on bacterial initial adhesion, biofilm formation and dispersal using MTT-reduction assay, confocal laser scanning microscopy and image PHLIP analysis. The number of adhering S. aureus and S. epidermidis cells after a 3-h co-incubation with biosurfactants was reduced by 5-56 % in a strain-and dose-dependent manner. S. epidermidis-and, to a lower extent, in S. aureus-biofilm formation was also inhibited in the presence of the tested surfactants. The addition of surfactants to preformed mature biofilms accelerated their dispersal, and changed the parameters of biofilm morphology. The L. acidophilus-derived surfactants inhibit bacterial deposition rate and biofilm development (and also its maturation) without affecting cell growth probably due to the influence on the cell-surface hydrophobicity of staphylococci.  相似文献   

12.
Bacterial biofilms which are responsible for a number of diseases are very difficult to control effectively because of their high resistance to antibiotics and the host defence system. The use of natural products decreasing or preventing initial adhesion of bacteria and biofilm formation is one of the alternative therapeutic strategies taken into consideration. We ask the question, whether a crude extract from the cell wall of Saccharomyces cerevisiae (mannoprotein), which possesses surfactant activity, may be used as inhibitor of Staphylococcus aureus and S. epidermidis biofilm development. By using the "bactericidal spot assay" it was demonstrated that mannoprotein had no direct antibiotic activity against the tested strains. The influence of this extract on initial adhesion, biofilm formation and dispersal of preformed biofilms was studied using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. In this assay, live bacteria with an active electron transport system reduce the tetrazolium salt to a water-soluble purple formazan product, and optical density reading (A550) values are directly dependent on their cell numbers. Yeast-derived surfactant, when adsorbed in the microplate wells or present in the medium, was effective both in decreasing the initial deposition of staphylococci and in reducing the amount of growing biofilm, quantitated after 24 h of co-incubation with the bacteria. It also changed the parameters of biofilm morphology analyzed by PHLIP - the confocal laser scanning microscopy image quantification package. Mannoprotein also accelerated the detachment of mature staphylococcal biofilms, preformed in optimal conditions. It was concluded that mannoprotein anti-biofilm action reflects its influence on cell surface hydrophobicity.  相似文献   

13.
Staphylococcus aureus (S. aureus) biofilms are clinically serious and play a critical role in the persistence of chronic infections due to their ability to resist antibiotics. The inhibition of biofilm formation is viewed as a new strategy for the prevention of S. aureus infections. Here, we demonstrated that minimum inhibitory concentrations (MICs) of aloe-emodin exhibited no bactericidal activity against S. aureus but affected S. aureus biofilm development in a dose-dependent manner. Further studies indicated that aloe-emodin specifically inhibits the initial adhesion and proliferation stages of S. aureus biofilm development. Scanning electron microscopy (SEM) indicated that the S. aureus ATCC29213 biofilm extracellular matrix is mainly composed of protein. Laser scanning confocal microscope assays revealed that aloe-emodin treatment primarily inhibited extracellular protein production. Moreover, the Congo red assay showed that aloe-emodin also reduced the accumulation of polysaccharide intercellular adhesin (PIA) on the cell surface. These findings will provide new insights into the mode of action of aloe-emodin in the treatment of infections by S. aureus biofilms.  相似文献   

14.
PNAG is a major component of Staphylococcus epidermidis biofilms involved in intercellular adhesion as well as in the interaction of the biofilm with components of the host immune response. Synthesis of PNAG has been found to be regulated by several environmental factors. In the present study, the effect of glucose metabolism-dependent culture medium acidification in PNAG accumulation was evaluated. Established S. epidermidis biofilms were allowed to grow in excess glucose with or without maintained pH conditions. PNAG accumulation in these biofilms was determined by flow cytometry and fluorescence microscopy using wheat germ agglutinin as a fluorescent probe. Biofilms grown in maintained pH conditions presented significantly higher amounts of this polymer as well as higher icaA expression than biofilms grown in acidic pH conditions. Moreover, PNAG accumulation in biofilms grown in non-maintained pH conditions occurred in association with cell death. Overall, we show that glucose metabolism by decreasing the culture pH affects biofilm physiology in respect to PNAG production and cell death. The reported in vitro modulation of PNAG accumulation within S. epidermidis biofilms further highlights the role of environment on determining the biofilm physiological state.  相似文献   

15.
Staphylococcus epidermidis has become a significant pathogen causing infections due to biofilm formation on surfaces of indwelling medical devices. Biofilm-associated bacteria exhibit enhanced resistance to many conventional antibiotics. It is therefore, important to design novel antimicrobial reagents targeting S. epidermidis biofilms. In a static chamber system, the bactericidal effect of two leading compounds active as YycG inhibitors was assessed on biofilm cells by confocal laser scanning microscopy combined with viability staining. In young biofilms (6-h-old), the two compounds killed the majority of the embedded cells at concentrations of 100 microM and 25 microM, respectively. In mature biofilms (24-h-old), one compound was still effectively killing biofilm cells, whereas the other compound mainly killed cells located at the bottom of the biofilm. In contrast, vancomycin was found to stimulate biofilm development at the MBC (8 microg mL(-1)). Even at a high concentration (128 microg mL(-1)), vancomycin exhibited poor killing on cells embedded in biofilms. The two compounds exhibited faster and more effective killing of S. epidermidis planktonic cells than vancomycin at the early stage of exposure (6 h). The data suggest that the new inhibitors can serve as potential agents against S. epidermidis biofilms when added alone or in concert with other antimicrobial agents.  相似文献   

16.
ABSTRACT: BACKGROUND: Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic tolerance to the immune system. This increased resistance to conventional antibiotic therapy has lead to the search for new antimicrobial therapeutical agents. Farnesol, a quorum-sensing molecule in Candida albicans, has been described as impairing growth of several different microorganisms and we have previously shown its potential as an adjuvant in antimicrobial therapy against S. epidermidis. However, its mechanism of action in S. epidermidis is not fully known. In this work we better elucidate the role of farnesol against S: epidermidis biofilms using confocal laser scanning microscopy (CLSM). FINDINGS: 24 h biofilms were exposed to farnesol, vancomycin or rifampicin and were analysed by CLSM, after stained with a Live/Dead stain, a known indicator of cell viability, related with cell membrane integrity. Biofilms were also disrupted by sonication and viable and cultivable cells were quantified by colony forming units (CFU) plating. Farnesol showed a similar effect as vancomycin, both causing little reduction of cell viability but at the same time inducing significant changes in the biofilm structure. On the other hand, rifampicin showed a distinct action in S. epidermidis biofilms, by killing a significant proportion of biofilm bacteria. CONCLUSIONS: While farnesol is not very efficient at killing biofilm bacteria, it damages cell membrane, as determined by the live/dead staining, in a similar way as vancomycin.. Furthermore, farnesol might induce biofilm detachment, as determined by the reduced biofilm biomass, which can partially explain the previous findings regarding its role as a possible chemotherapy adjuvant.  相似文献   

17.
Staphylococcus epidermidis infections   总被引:24,自引:0,他引:24  
The opportunistic human pathogen Staphylococcus epidermidis has become the most important cause of nosocomial infections in recent years. Its pathogenicity is mainly due to the ability to form biofilms on indwelling medical devices. In a biofilm, S. epidermidis is protected against attacks from the immune system and against antibiotic treatment, making S. epidermidis infections difficult to eradicate.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号