首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity.  相似文献   

2.
Central nerve terminals contain a small number of synaptic vesicles (SVs) that must sustain the fidelity of neurotransmission across a wide range of stimulation intensities. For this to be achieved, nerve terminals integrate a number of complementary endocytosis modes whose activation spans the breadth of these neuronal stimulation patterns. Two such modes are ultrafast endocytosis and activity‐dependent bulk endocytosis, which are triggered by stimuli at either end of the physiological range. Both endocytosis modes generate endosomes directly from the nerve terminal plasma membrane, before the subsequent production of SVs from these structures. This review will discuss the current knowledge relating to the molecular mechanisms involved in the generation of SVs from nerve terminal endosomes, how this relates to other mechanisms of SV production and the functional role of such SVs.   相似文献   

3.
Central nerve terminals are placed under considerable stress during intense stimulation due to large numbers of synaptic vesicles (SVs) fusing with the plasma membrane. Classical clathrin-dependent SV endocytosis cannot correct for the large increase in nerve terminal surface area in the short term, due to its slow kinetics and low capacity. During such intense stimulation, an additional SV retrieval pathway is recruited called bulk endocytosis. Recent studies have shown that bulk endocytosis fulfils all of the physiological requirements to remedy the acute changes in nerve terminal surface area to allow the nerve terminal to continue to function. This review will summarise the recent developments in the field that characterise the physiology of bulk endocytosis which show that it is a fast, activity-dependent and high capacity mechanism that is essential for the function of central nerve terminals.  相似文献   

4.
After neurotransmitter release in central nerve terminals, SVs are rapidly retrieved by endocytosis. Retrieved SVs are then refilled with neurotransmitter and rejoin the recycling pool, defined as SVs that are available for exocytosis1,2. The recycling pool can generally be subdivided into two distinct pools - the readily releasable pool (RRP) and the reserve pool (RP). As their names imply, the RRP consists of SVs that are immediately available for fusion while RP SVs are released only during intense stimulation1,2. It is important to have a reliable assay that reports the differential replenishment of these SV pools in order to understand 1) how SVs traffic after different modes of endocytosis (such as clathrin-dependent endocytosis and activity-dependent bulk endocytosis) and 2) the mechanisms controlling the mobilisation of both the RRP and RP in response to different stimuli.FM dyes are routinely employed to quantitatively report SV turnover in central nerve terminals3-8. They have a hydrophobic hydrocarbon tail that allows reversible partitioning in the lipid bilayer, and a hydrophilic head group that blocks passage across membranes. The dyes have little fluorescence in aqueous solution, but their quantum yield increases dramatically when partitioned in membrane9. Thus FM dyes are ideal fluorescent probes for tracking actively recycling SVs. The standard protocol for use of FM dye is as follows. First they are applied to neurons and are taken up during endocytosis (Figure 1). After non-internalised dye is washed away from the plasma membrane, recycled SVs redistribute within the recycling pool. These SVs are then depleted using unloading stimuli (Figure 1). Since FM dye labelling of SVs is quantal10, the resulting fluorescence drop is proportional to the amount of vesicles released. Thus, the recycling and fusion of SVs generated from the previous round of endocytosis can be reliably quantified.Here, we present a protocol that has been modified to obtain two additional elements of information. Firstly, sequential unloading stimuli are used to differentially unload the RRP and the RP, to allow quantification of the replenishment of specific SV pools. Secondly, each nerve terminal undergoes the protocol twice. Thus, the response of the same nerve terminal at S1 can be compared against the presence of a test substance at phase S2 (Figure 2), providing an internal control. This is important, since the extent of SV recycling across different nerve terminals is highly variable11.Any adherent primary neuronal cultures may be used for this protocol, however the plating density, solutions and stimulation conditions are optimised for cerebellar granule neurons (CGNs)12,13.  相似文献   

5.
From a presynaptic perspective, neuronal communication mainly relies on two interdependent events: The fast Ca2+-triggered fusion of neurotransmitter-containing synaptic vesicles (SVs) and their subsequent high-fidelity reformation. To allow rapid neurotransmission, SVs have evolved into fascinating molecular nanomachines equipped with a well-defined set of proteins. However, upon exocytosis, SVs fully collapse into the presynaptic plasma membrane leading to the dispersal of their molecular components. While the canonical function of endocytic proteins at the presynapse was believed to be the retrieval of SV proteins via clathrin-mediated endocytosis, it is now evident that clathrin-independent endocytic mechanisms predominate. We will highlight in how far these mechanisms still rely on the classical endocytic machinery and discuss the emerging functions of endocytic proteins in release site clearance and SV reformation from endosomal-like vacuoles.  相似文献   

6.
7.
Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis.  相似文献   

8.
Clathrin-mediated endocytosis is the major pathway for recycling of granule membrane components after strong stimulation and high exocytotic rates. It resembles “classical” receptor-mediated endocytosis but has a trigger that is unique to secretion, the sudden appearance of the secretory granule membrane in the plasma membrane. The spatial localization, the relationship to individual fusion events, the nature of the cargo, and the timing and nature of the nucleation events are unknown. Furthermore, a size mismatch between chromaffin granules (∼300-nm diameter) and typical clathrin-coated vesicles (∼90 nm) makes it unlikely that clathrin-mediated endocytosis internalizes as a unit the entire fused granule membrane. We have used a combination of total internal reflection fluorescence microscopy of transiently expressed proteins and time-resolved quantitative confocal imaging of endogenous proteins along with a fluid-phase marker to address these issues. We demonstrate that the fused granule membrane remains a distinct entity and serves as a nucleation site for clathrin- and dynamin-mediated endocytosis that internalizes granule membrane components in small increments.  相似文献   

9.
In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified “large-capacitance flickers” that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent “compound cavicapture,” most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.  相似文献   

10.
Kuromi  Hiroshi  Kidokoro  Yoshi 《Brain Cell Biology》2003,32(5-8):551-565
Drosophila neuromuscular junctions (DNMJs) are malleable and its synaptic strength changes with activities. Mobilization and recruitment of synaptic vesicles (SVs), and replenishment of SV pools in the presynaptic terminal are involved in control of synaptic efficacy. We have studied dynamics of SVs using a fluorescent styryl dye, FM1-43, which is loaded into SVs during endocytosis and released during exocytosis, and identified two SV pools. The exo/endo cycling pool (ECP) is loaded with FM1-43 during low frequency nerve stimulation and releases FM1-43 during exocytosis induced by high K+. The ECP locates close to release sites in the periphery of presynaptic boutons. The reserve pool (RP) is loaded and unloaded only during high frequency stimulation and resides primarily in the center of boutons. The size of ECP closely correlates with the efficacy of synaptic transmission during low frequency neuronal firing. An increase of cAMP facilitates SV movement from RP to ECP. Post-tetanic potentiation (PTP) correlates well with recruitment of SVs from RP. Neither PTP nor post-tetanic recruitment of SVs from RP occurs in memory mutants that have defects in the cAMP/PKA cascade. Cyotochalasin D slows mobilization of SVs from RP, suggesting involvement of actin filaments in SV movement. During repetitive nerve stimulation the ECP is replenished, while RP replenishment occurs after tetanic stimulation in the absence of external Ca2+. Mobilization of internal Ca2+ stores underlies RP replenishment. SV dynamics is involved in synaptic plasticity and DNMJs are suitable for further studies.  相似文献   

11.
The regulation of activity-dependent bulk endocytosis, the dominant mode of membrane retrieval in response to intense neuronal activity, is poorly understood. In this JCB issue, Peng et al. (2021. J. Cell. Biol. https://doi.org/10.1083/jcb.202011028) propose a novel molecular mechanism for the coordination of activity-dependent bulk endocytosis that builds on Minibrain kinase and its presynaptic substrate synaptojanin-1.

Brain function necessitates sustained synaptic transmission regardless of activity demands. The preservation of synaptic transmission depends on the efficient (re)formation of synaptic vesicles (SVs) by endocytosis after their insertion into the synaptic plasma membrane during neuronal stimulation (1). During mild and sparse stimulation, the dominant endocytosis modes are ultrafast endocytosis and clathrin-mediated endocytosis (CME; 1). Both modes appear to have a fixed rate and limited capacity, and therefore cannot adapt to high frequency stimulations that accumulate inserted SV membranes at the presynaptic terminal. Under these conditions, a different endocytosis mode is predominantly used, termed activity-dependent bulk endocytosis (ADBE). ADBE retrieves large areas of the presynaptic plasma membrane to form bulk endosomes, from which new SVs are then generated (1). This form of endocytosis is particularly common in synapses that operate with high rates of neurotransmission, e.g., ribbon synapses of sensory neurons. ADBE contributes to presynaptic plasticity, having recently been demonstrated to control neurotransmitter release probability (2). Importantly, defects in ADBE and SV endocytosis in general have profound consequences on neuronal function and survival, with dysfunction linked to a series of neurodevelopmental disorders (3).Considering the importance of ADBE to brain physiology and pathology, it is essential to understand the molecular machinery that controls this process and synchronizes it with other synaptic events. Amazingly, despite the fact that ADBE was described in the early 1970s, its regulation remains mysterious. Several protein kinases and phosphatases that contribute to regulation of CME and other endocytosis modes (1) may also contribute to ADBE. For example, the calcium/calmodulin-dependent phosphatase calcineurin activates ADBE, working with glycogen synthase kinase-3 to provide bidirectional control via the phosphorylation of specific substrates (4). However, many presynaptic proteins are calcineurin substrates, suggesting other protein kinases may perform complementary roles.In a recent paper, Chang and colleagues (5) present data in support of calcineurin and Minibrain (Mnb) as coregulators of ADBE in fruit flies via bidirectional control of the phosphorylation status of synaptojanin (Synj)-1 phosphatase. The authors argue that the Synj-1 phosphorylation status coordinates the activity-dependent balance between CME versus ADBE (Fig. 1). Namely, during mild stimulation CME is promoted by Mnb, while ADBE is inhibited. During intense stimulation, dephosphorylation of Synj-1 by calcineurin is required to activate ADBE (Fig. 1). An interesting novel aspect arises from examination of domain-specific Synj-1 mutants: its 4′-phosphatase SAC1 activity supports ADBE, while its 5′-phosphatase (5′-PPase) domain suppresses it. The Bin/Amphiphysin/Rvs domain protein endophilin-A has been implicated in ADBE (6); however, a Synj-1 mutant lacking the endophilin-A binding proline-rich domain (PRD) had no effect. Further studies may therefore be required to dissect synaptojanin-1–dependent and –independent roles of endophilin in ADBE.Open in a separate windowFigure 1.Control of CME and ADBE via Minibrain kinase and calcineurin phosphatase. Synj-1 is phosphorylated by Mnb kinase on Ser1029 on its PRD. This promotes the 5′-PPase activity of Synj-1 and inhibits association with the endocytosis protein endophilin-A. These events promote CME. During intense neuronal activity, calcineurin (CaN) is activated and dephosphorylates Synj-1. This reduces 5′-PPase activity and promotes association with endophilin. The dephosphorylation also promotes ADBE via inhibition of Synj-1 5′-PPase activity. This phospho-regulation of the endophilin interaction does not impact ADBE. The SAC activity of Synj-1 is essential for ADBE and is unaffected by phosphorylation.Collectively, the data by Chang and colleagues consolidate the key role played by calcineurin in ADBE and identify Mnb as a new ADBE protein kinase. Intriguingly, the number of synapses performing ADBE is increased in Mnb hypomorphs, suggesting there is additional endocytic capacity that can be recruited on demand. There also appears to be bidirectional control of ADBE via Mnb, since Mnb overexpression represses this pathway. Notably, the enzyme activities of Synj-1 are regulated by Mnb- and calcineurin-dependent turnover of phosphorylation of S1029 (Fig. 1; 7, 8). In mammals, cyclin-dependent kinase 5 is suggested to control Synj-1 activity (9); therefore, it important to confirm whether Synj-1 is also phosphorylated by the Mnb orthologue, dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), in mammals. A key test of the causality of activity-dependent phosphorylation events is whether they occur to the same stimulation intensities as the biological event. In this study, activity-dependent dephosphorylation of S1029 on Synj-1 was not demonstrated; instead, an absence of activity-dependent Mnb phosphorylation was observed. In mitigation, the authors convincingly demonstrated that Synj-1 phosphorylation increased during prolonged stimulus in the absence of calcineurin function.This work also confirmed a key role for the phospholipid PI(4,5)P2 in ADBE (1). Interestingly, it further revealed a hitherto undiscovered role for the SAC domain, but not the 5′-PPase domain of Synj-1 in ADBE. This latter activity is essential for other forms of endocytosis, such as CME and ultrafast endocytosis, with SAC activity required for clathrin-dependent vesicle generation from endosomes (10, 11). In addition to potential roles for Synj-1 SAC activity discussed by Chang and colleagues, a more provocative (and simplistic) explanation is that the end product, phosphatidylinositol (PI) itself, is important for ADBE. In support, the neurons without diacylglycerol kinase (which generates the PI precursor phosphatidic acid) display SV endocytosis defects that are exacerbated during high activity (12).A lack of accurate assays that monitor ADBE in both time and space has limited research in small nerve terminals for decades. In this work, ADBE is evoked and monitored using multiple approaches. This is important, since there is no simple method to monitor ADBE; therefore, it requires cross corroboration wherever possible. This study was greatly assisted via the use of genetically tractable model organisms, allowing precise intervention to abate the function of key proteins and enzymes in vivo. Yet, the trade-off is the relative imprecision of stimulation to evoke SV turnover, with prolonged periods of stimulation (and parallel inhibition of CME) required to evoke and isolate ADBE.Since Peng et al. shed light on new aspects of ADBE regulation, further questions can now be envisioned. In particular, how localized production and degradation of membrane phospholipids coordinate the temporal and spatial triggering of specific endocytosis modes. The essential role for calcineurin in most forms of endocytosis suggests where and when dephosphorylation events occur at the presynapse may be critical in the recruitment of discrete SV reformation pathways. Furthermore, Mnb/DYRK1A is linked to brain pathologies, including Down’s syndrome and autism-spectrum disorders, which is yet to be explored. These and other questions will no doubt drive further studies of remarkable plasticity when it comes to formation of new SVs and synaptic transmission, and how they organize and govern our brain activity.  相似文献   

12.
Summary This study concerns the timing and magnitude of exocytosis and endocytosis in the granular cells of toad bladder during the hydroosmotic response to antidiuretic hormone. Granule exocytosis at the luminal cell surface is extensive within 5 min of the administration of a physiological dose of hormone. Hydroosmosis becomes detectable during this time period. The amount of membrane added to the luminal surface by exocytosis during 60 min of exposure to hormone can be of the same order of magnitude as the extent of the luminal plasma membrane. Endocytosis, demonstrated by peroxidase uptake from the luminal surface, becomes extensive during the period 15–45 min after hormone administration. Thus, maximal endocytic activity occurs later than the period of most extensive exocytosis and seems to correlate with the onset of the decline in water movement. The amount of membrane retrieved from the luminal surface by endocytosis during 60 min of stimulation is at least three quarters of that added by exocytosis. The bulk membrane movement in ADH stimulated preparations does not require the presence of an osmotic gradient. Colchicine inhibits the hydroosmotic response, the exocytosis of granules, and endocytosis at the luminal surface. These results strengthen our view that the bulk circulation of membrane at the cell surface, via exocytosis and endocytosis, is closely related to the permeability changes occuring at the surface.  相似文献   

13.
Bai J  Hu Z  Dittman JS  Pym EC  Kaplan JM 《Cell》2010,143(3):430-441
Two models have been proposed for endophilin function in synaptic vesicle (SV) endocytosis. The scaffolding model proposes that endophilin's SH3 domain recruits essential endocytic proteins, whereas the membrane-bending model proposes that the BAR domain induces positively curved membranes. We show that mutations disrupting the scaffolding function do not impair endocytosis, whereas those disrupting membrane bending cause significant defects. By anchoring endophilin to the plasma membrane, we show that endophilin acts prior to scission to promote endocytosis. Despite acting at the plasma membrane, the majority of endophilin is targeted to the SV pool. Photoactivation studies suggest that the soluble pool of endophilin at synapses is provided by unbinding from the adjacent SV pool and that the unbinding rate is regulated by exocytosis. Thus, endophilin participates in an association-dissociation cycle with SVs that parallels the cycle of exo- and endocytosis. This endophilin cycle may provide a mechanism for functionally coupling endocytosis and exocytosis.  相似文献   

14.
Recent evidence suggests that endocytosis in neuroendocrine cells and neurons can be tightly coupled to exocytosis, allowing rapid retrieval from the plasma membrane of fused vesicles for future use. This can be a much faster mechanism for membrane recycling than classical clathrin-mediated endocytosis. During a fast exo-endocytotic cycle, the vesicle membrane does not fully collapse into the plasma membrane; nevertheless, it releases the vesicular contents through the fusion pore. Once the vesicle is depleted of transmitter, its membrane is recovered without renouncing its identity. In this report, we show that chromaffin cells contain catecholamine-free granules that retain their ability to fuse with the plasma membrane. These catecholamine-free granules represent 7% of the total population of fused vesicles, but they contributed to 47% of the fusion events when the cells were treated with reserpine for several hours. We propose that rat chromaffin granules that transiently fuse with the plasma membrane preserve their exocytotic machinery, allowing another round of exocytosis.  相似文献   

15.
The close correspondence between the distribution of brain alpha-synuclein and that of muscarinic M1 and M3 receptors suggests a role for this protein in cholinergic transmission. We thus examined the effect of muscarinic stimulation on alpha-synuclein in SH-SY5Y, a human dopaminergic cell line that expresses this protein. Under basal conditions, alpha-synuclein was detected in all subcellular compartments isolated as follows: plasma membrane, cytoplasm, nucleus, and two vesicle fractions. The lipid fractions contained only a 45-kDa alpha-synuclein oligomer, whereas the cytoplasmic and nuclear fractions contained both the oligomer and the monomer. This finding suggests alpha-synuclein exists physiologically as a lipid-bound oligomer and a soluble monomer. Muscarinic stimulation by carbachol reduced the alpha-synuclein oligomer in plasma membrane over a 30-min period, with a concomitant increase of both the oligomer and the monomer in the cytoplasmic fraction. The oligomer was associated with a light vesicle fraction in cytoplasm that contains uncoated endocytotic vesicles. The carbachol-induced alteration of alpha-synuclein was blocked by atropine. Translocation of the alpha-synuclein oligomer in response to carbachol stimulation corresponds closely with the time course of ligand-stimulated muscarinic receptor endocytosis. The data suggest that the muscarine receptor stimulated release of the alpha-synuclein oligomer from plasma membrane, and its subsequent association with the endocytotic vesicle fraction may have a role in muscarine receptor endocytosis. We propose that its function may be a transient release of membrane-bound phospholipase D2 from alpha-synuclein inhibition, thus allowing this lipase to participate in muscarinic receptor endocytosis.  相似文献   

16.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

17.
BACKGROUND: Among the most prominent molecular constituents of a recycling synaptic vesicle is the clathrin triskelion, composed of clathrin light chain (Clc) and clathrin heavy chain (Chc). Remarkably, it remains unknown whether clathrin is strictly necessary for the stimulus-dependent re-formation of a synaptic vesicle and, conversely, whether clathrin-independent vesicle endocytosis exists at the neuronal synapse. RESULTS: We employ FlAsH-FALI-mediated protein photoinactivation to rapidly (3 min) and specifically disrupt Clc function at the Drosophila neuromuscular junction. We first demonstrate that Clc photoinactivation does not impair synaptic-vesicle fusion. We then provide electrophysiological and ultrastructural evidence that synaptic vesicles, once fused with the plasma membrane, cannot be re-formed after Clc photoinactivation. Finally, we demonstrate that stimulus-dependent membrane internalization occurs after Clc photoinactivation. However, newly internalized membrane fails to resolve into synaptic vesicles. Rather, newly internalized membrane forms large and extensive internal-membrane compartments that are never observed at a wild-type synapse. CONCLUSIONS: We make three major conclusions. (1) FlAsH-FALI-mediated protein photoinactivation rapidly and specifically disrupts Clc function with no effect on synaptic-vesicle fusion. (2) Synaptic-vesicle re-formation does not occur after Clc photoinactivation. By extension, clathrin-independent "kiss-and-run" endocytosis does not sustain synaptic transmission during a stimulus train at this synapse. (3) Stimulus-dependent, clathrin-independent membrane internalization exists at this synapse, but it is unable to generate fusion-competent, small-diameter synaptic vesicles.  相似文献   

18.
R Marsault  M Murgia  T Pozzan    R Rizzuto 《The EMBO journal》1997,16(7):1575-1581
Theoretical models and indirect experimental observations predict that Ca2+ concentrations at the inner surface of the plasma membrane may reach, upon stimulation, values much higher than those of the bulk cytosol. In the past few years, we have shown that the Ca2+-sensitive photoprotein aequorin can be intracellularly targeted and utilized for specifically monitoring the [Ca2+] of various organelles. In this work, we extend this approach to the study of the cytoplasmic rim beneath the plasma membrane. We have constructed a new aequorin chimera by fusing the photoprotein with SNAP-25, a neuronal protein which is recruited to the plasma membrane after the post-translational addition of a lipid anchor. The SNAP-25-aequorin chimera, expressed in the rat aortic smooth muscle cell line A7r5, appears correctly sorted as revealed by immunocytochemistry. Using this probe, we demonstrate that the mean [Ca2+] of this cytoplasmic region ([Ca2+]pm) can reach values >10-fold higher than those of the bulk cytosol ([Ca2+]c) upon activation of Ca2+ influx through plasma membrane channels. In unstimulated cells, the mean [Ca2+]pm appears also to be higher than the bulk cytosol, presumably reflecting the existence of microdomains of high [Ca2+].  相似文献   

19.
High ErbB2 levels are associated with cancer, and impaired endocytosis of ErbB2 could contribute to its overexpression. Therefore, knowledge about the mechanisms underlying endocytic down-regulation of ErbB2 is warranted. The C-terminus of ErbB2 can be cleaved after various stimuli, and after inhibition of HSP90 with geldanamycin this cleavage is accompanied by proteasome-dependent endocytosis of ErbB2. However, it is unknown whether C-terminal cleavage is linked to endocytosis. To study ErbB2 cleavage and endocytic trafficking, we fused yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) to the N- and C-terminus of ErbB2, respectively (YFP-ErbB2-CFP). After geldanamycin stimulation YFP-ErbB2-CFP became cleaved in nonapoptotic cells in a proteasome-dependent manner, and a markedly larger relative amount of cleaved YFP-ErbB2-CFP was observed in early endosomes than in the plasma membrane. Furthermore, cleavage took place at the plasma membrane, and cleaved ErbB2 was internalized and degraded far more efficiently than full-length ErbB2. Concordantly, a C-terminally truncated ErbB2 was also readily endocytosed and degraded in lysosomes compared with full-length ErbB2. Altogether, we suggest that geldanamycin leads to C-terminal cleavage of ErbB2, which releases the receptor from a retention mechanism and causes endocytosis and lysosomal degradation of ErbB2.  相似文献   

20.
Clathrin‐Dependent or Not: Is It Still the Question?   总被引:7,自引:1,他引:6  
Whether the endocytic uptake of a given molecule is mediated through clathrin-coated pits or not is a classical criterion used to characterize its endocytic pathway(s). Hence, clathrin-dependent endocytosis has been associated with highly selective and efficient uptake, whereas clathrin-independent endocytosis appeared to be confined to bulk uptake of fluid-phase markers. This scholastic view has recently been challenged using newly developed molecular tools that allow for the first time a functional and mechanistic analysis of these less well-characterized clathrin-independent pathways, including caveolar uptake and macropinocytosis. Furthermore, several studies point to a critical role of lateral lipid asymmetry – lipid rafts/microdomains – in membrane sorting. We will discuss the potential role of these structures in endocytosis and the possibility that differential sorting at the plasma membrane predisposes the ensuing intracellular fate of a given molecule as well as its physiological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号