首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
超氧化物歧化酶(SOD)研究进展   总被引:52,自引:0,他引:52  
环境胁迫使植物细胞中积累大量的活性氧,从而导致蛋白质、膜脂、DNA及其它细胞组分的严重损伤。植物体内有效清除活性氧的酶类包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)等,其中研究最深入的是SOD。利用基因工程策略增加这些物质在植物体内的含量,从而获得抗逆转基因植株。  相似文献   

2.
低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响   总被引:55,自引:5,他引:50  
研究了西瓜实生苗和以黑籽南瓜、超丰F1为砧木的嫁接苗的耐冷性及活性氧清除系统的差异.结果表明,低温胁迫下,嫁接苗的耐冷性明显高于实生苗,表现为以黑籽南瓜为砧木的嫁接苗的耐冷性>以超丰F1为砧木的嫁接苗>实生苗,此外嫁接苗和实生苗均表现为叶片中叶绿素含量下降,丙二醛(MDA)含量上升,非酶促抗氧化剂抗坏血酸(AsA)、谷胱甘肽(GSH)含量和抗氧化酶超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(AsA-POD)、脱氢抗坏血酸还原酶(DR)活性下降,说明低温逆境降低了植物体防御活性氧有关的酶促和非酶促保护系统能力,提高了体内自由基浓度,加剧了膜脂过氧化.嫁接苗的活性氧清除能力均高于自根苗,且嫁接苗中耐冷性越强的活性氧清除能力越高,说明西瓜嫁接后耐冷性的提高是与植物体内活性氧清除系统中抗氧化剂含量和抗氧化酶活性提高有关。  相似文献   

3.
植物谷胱甘肽过氧化物酶研究进展   总被引:2,自引:0,他引:2  
苗雨晨  白玲  苗琛  陈珈  宋纯鹏 《植物学报》2005,22(3):350-356
氧化胁迫可诱导植物多种防御酶的产生, 其中包括超氧化物歧化酶(SOD, EC1.15.1.1)、抗坏血酸过氧化物酶(APX, EC1.11.1.11)、过氧化氢酶(CAT, E.C.1.11.1.6 )和谷胱甘肽过氧化物酶(GPXs,EC1.11.1.9)。它们在清除活性氧过程中起着不同的作用。GPXs是动物体内清除氧自由基的主要酶类,但它在植物中的功能报道甚少。最近几年研究表明, 植物体内也存在类似于哺乳动物的GPXs家族, 并对其功能研究已初见端倪。本文综述了有关GPXs的结构以及植物GPXs功能的研究进展。  相似文献   

4.
植物谷胱甘肽过氧化物酶研究进展   总被引:19,自引:1,他引:18  
氧化胁迫可诱导植物多种防御酶的产生,其中包括超氧化物歧化酶(SOD,EC1.15.L1)、抗坏血酸过氧化物酶(APX,EC1.11.1.11)、过氧化氢酶(CAT,E.C.1.11.1.6)和谷胱甘肽过氧化物酶(GPXs,EC1.11.1.9).它们在清除活性氧过程中起着不同的作用.GPXs是动物体内清除氧自由基的主要酶类,但它在植物中的功能报道甚少.最近几年研究表明,植物体内也存在类似于哺乳动物的GPXs家族,并对其功能研究已初见端倪.本文综述了有关GPXs的结构以及植物GPXs功能的研究进展.  相似文献   

5.
昆虫体内抗氧化系统研究进展   总被引:19,自引:0,他引:19  
李毅平  龚和 《生命科学》1998,10(5):240-243,221
昆虫为了减轻和防止活性氧损伤,已形成了复杂的氧化应激机制。可通过酶促如超氧化物歧化酶、过氧化物酶、过氧化氢酶等和非酶促谷胱甘肽、抗坏血酸和胡萝卜素等清除活性氧的系统以清除过量的活性氧。本文论述了昆虫在氧化胁迫下所具有的一套抗氧化系统。对其系统组成抗氧化酶和抗氧化剂的主要成分的抗氧化活性进行了综述。  相似文献   

6.
NaHCO3胁迫下叶面喷施海藻糖(trehalose,TR)的南蛇藤叶中活性氧(O2和H2O2)产生速率、丙二醛(MDA)含量以及电解质外渗率显著下降(P<0.05),超氧化物歧化酶(SOD),过氧化氢酶(CAT)、过氧化物酶(POD),抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性以及抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量明显提高.显示外源海藻糖可在一定程度上提高NaHCO3胁迫下的南蛇藤叶细胞膜保护功能,减少叶中活性氧的积累,抑制脂质过氧化,从而提高南蛇藤抗NaHCO3胁迫的能力.  相似文献   

7.
夜间低温胁迫对番茄叶片活性氧代谢及AsA-GSH循环的影响   总被引:3,自引:0,他引:3  
以番茄品种‘辽园多丽’为试材,利用人工气候室模拟设施生产中的夜间低温胁迫环境,研究9℃和6℃夜低温对番茄叶片活性氧代谢和AsA-GSH循环的影响。结果显示:9℃和6℃夜间低温胁迫3~9d可诱导番茄叶片中超氧阴离子(O2.-)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量上升;抑制过氧化物酶(POD)、过氧化氢酶(CAT)的活性,增加超氧化物歧化酶(SOD)和AsA-GSH循环中抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)的活性,并提高还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)的含量。研究表明,在夜间低温胁迫过程中,增加的番茄叶片中SOD活性和AsA-GSH循环清除活性氧的能力并未与氧还原的速率一致,从而导致番茄叶片中活性氧的累积,使细胞膜系统受到一定破坏,在6℃处理的植物中尤为明显。  相似文献   

8.
以‘拉丁诺’白三叶(Trifolium repens cv.‘Ladino’)为试验材料,研究外源H2S处理对PEG6 000(聚乙二醇)模拟干旱胁迫下白三叶叶片相对含水量(RWC)、膜脂过氧化、活性氧成分、抗氧化酶、抗坏血酸-谷胱甘肽循环代谢和非酶抗氧化物质的影响,以揭示H_2S调控白三叶抗旱性的生理机制。结果显示:(1)0.2 mmol/L的外源NaHS(H_2S供体)能显著提高干旱胁迫下白三叶的叶片相对含水量,维持显著较低的电解质渗透率(EL)和丙二醛(MDA)含量。(2)与直接干旱胁迫相比,干旱胁迫下外源添加NaHS处理的白三叶叶片内超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性显著增强,抗坏血酸-谷胱甘肽循环代谢中关键酶抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、单脱水抗坏血酸还原酶(MDHAR)和谷胱甘肽还原酶(GR)活性及其抗氧化中间产物抗坏血酸(AsA)、谷胱甘肽(GSH)含量也显著提高。(3)叶片类黄酮、总酚和原花青素的含量在一定的胁迫时间范围内亦显著增加,并伴随着活性氧成分O_2~(-·)产生速率和H_2O_2水平降低。研究认为,外源H2S能通过促进干旱胁迫下白三叶体内的多重抗氧化防御能力来提高其幼苗的抗旱性。  相似文献   

9.
以拟南芥抗坏血酸突变体(υtc-1)和野生型(ωt)为材料,研究了抗氧化系统对盐胁迫的响应机制.以揭示抗坏血酸(ASA)的抗氧化机理及对植物的保护功能。结果显示:100mmol/L NaCl处理12、24、48、72h,υtc-1和ωt体内MDA(丙二醛)及H2O2(过氧化氢)的含量均明显增加,但υtc-1增加的程度明显高于ωt,说明盐胁迫可能对υtc-1造成了更严重的氧化伤害。胁迫过程中,ωt体内的几种抗氧化酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)]活性均升高,而υtc-1体内SOD、CAT活性降低,APX活性在胁迫24h之前增加,24h之后降低;同时,υtc-1中总的抗坏血酸含量和还原型谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)的比值下降,而ωt与此相反。本研究表明:抗坏血酸参与活性氧(AOS)的代谢,减轻AOS对植物的伤害;并可能对植物细胞内的抗氧化酶具有调节作用,增强逆境胁迫下植物的抗逆能力,对植物有重要的生物学保护功能。  相似文献   

10.
植物谷胱甘肽过氧化物酶(GPX)研究进展   总被引:1,自引:0,他引:1  
逆境胁迫会诱导植物产生过多的活性氧(ROS),引起氧化胁迫,严重影响其生长发育。相应地,植物为适应诸多不良环境会产生多种抗氧化剂、抗氧化酶等协调氧化还原平衡,其中谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)是植物体内重要的抗氧化酶之一。对近年来植物中GPX的结构、亚细胞定位、酶催化底物特点及作用研究进展进行综述,并对未来可能的研究方向进行展望。  相似文献   

11.
Arsenic induced oxidative stress in plants   总被引:3,自引:0,他引:3  
Iti Sharma 《Biologia》2012,67(3):447-453
Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in the plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues adversely affects the plant metabolism and leads to various physiological and structural disorders. Photosynthetic apparatus, cell division machinery, energy production, and redox status are the major section of plant system that are badly affected by As (V). Similarly As (III) can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes. Arsenic is also known to induce oxidative stress directly by generating reactive oxygen species (ROS) during conversion of its valence forms or indirectly by inactivating antioxidant molecules through binding with their -SH groups. As-mediated oxidative stress causes cellular, molecular and physiological disturbances in various plant species. Activation of enzymatic antioxidants namely, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), Glutathione s-transferase, glutathione peroxidase (GPX) as well as non antioxidant compounds such as, ascorbate, glutathione, carotenoids are reported to neutralize arsenic mediated oxidative stress. Understanding of biochemistry of arsenic toxicity would be beneficial for the development of arsenic tolerant crops and other economically important plants.  相似文献   

12.
In excess, iron can induce the production and accumulation of reactive oxygen species (ROS), causing oxidative stress. The objective of this work was to evaluate the impact of toxic concentrations of iron (Fe) on the antioxidative metabolism of young Eugenia uniflora plants. Forty-five-day-old plants grown in Hoagland nutrient solution, pH 5.0, were treated with three Fe concentrations, in the form of FeEDTA, during three periods of time. At the end of the treatment, the plants were harvested and relative growth rate, iron content, lipid peroxidation and enzymes and metabolites of the antioxidative metabolism were determined. Iron-treated plants showed higher iron contents, reduced relative growth rates and iron toxicity symptoms in both leaves and roots. There was an increase in lipid peroxidation with increasing Fe, only in the leaves. The enzymatic activities of superoxide dismutase (SOD) and glutathione reductase (GR) increased with increasing Fe concentration and treatment exposure time. The activities of catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APX) also increased with increasing Fe concentration but decreased with increasing treatment exposure time. Glutathione peroxidase activity (GPX) decreased with increasing Fe concentration and exposure time. The ascorbate (AA) and reduced glutathione (GSH) contents and the AA/DHA and GSH/GSSG ratios, in general, increased with increasing Fe concentration and treatment exposure time. The results indicate that under toxic levels of Fe, young E. uniflora plants suffer increased oxidative stress, which is ameliorated through changes in the activities of antioxidative enzymes and in the contents of the antioxidants AA and GSH.  相似文献   

13.
A number of studies have established that plant growth and development in oilseed rape (Brassica napus L.) are hampered by salinity stress. Nowadays, researchers have focused on the use of plant growth regulators to increase plant tolerance against salinity. An experiment was performed to evaluate the effects of 5-aminolevulinic acid (ALA, 30 mg l?1) on Brassica napus L. (cv. ??ZS 758??) plants under NaCl (100, 200 mM) salinity. Data presented here were recorded on two different leaf positions (first and third) to have a better understanding of the ameliorative role of ALA on NaCl-stressed oilseed rape plants. Results have shown that increasing salinity imposed negative impact on relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), whereas enhanced the level of relative conductivity, malondialdehyde (MDA) content, osmolytes (soluble sugar, soluble protein, free amino acid and proline) concentration, reactive oxygen species (ROS), and enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in two different leaf position samples. Foliar application of ALA improved relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), and also triggered the further accumulation of osmolytes (soluble sugar, soluble protein, free amino acid and proline) as well as enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in both leaf samples, whereas decreased the membrane permeability, MDA content and ROS production. Our results also indicate that osmolytes are preferentially accumulated in younger tissues.  相似文献   

14.
Ablotlc stress, such as salt, drought and extreme temperature, can result in enhanced production of reactive oxygen species (ROS). Plants have developed both enzymatic ROS-scavenging and non-enzymatic ROS-scavenging systems. The major ROS-scavenging enzymes of plants include superoxide dismutase (SOD), ascorbate peroxldaae (APX), catalaae (CAT), glutathione peroxldaae (GPX) and peroxiredoxina (Prxa). In the present work, we identified a gene encoding chloroplast-located peroxiredoxin Q, SsPrxQ, from Suaeda salsa L. located at chloroplast. Overexpression of SsPrxQ In Arabidopsis leads to an increase In salt and low-temperature tolerance.  相似文献   

15.
Plant growth-promoting endophytic bacteria can stimulate the growth, nutrient acquisition, symbiotic performance and stress tolerance of chickpea plants under saline soil conditions. The aim of this study was to investigate the stress-adaptive mechanisms of chickpea plants mediated by Bacillus subtilis (BERA 71) under saline conditions. Inoculation with BERA 71 enhanced plant biomass and the synthesis of photosynthetic pigments and reduced the levels of reactive oxygen species (ROS) and lipid peroxidation in plants under conditions of stress. Furthermore, the activities of ROS-scavenging antioxidant enzymes (superoxide dismutase, peroxidase, catalase and glutathione reductase), the levels of non-enzymatic antioxidants (ascorbic acid and glutathione) and the total phenol content were increased in stressed plants during bacterial association. The bacteria decreased sodium accumulation and enhanced the nitrogen, potassium, calcium and magnesium content in the plants. The suppression of ROS generation and of lipid peroxidation and the accumulation of proline in BERA-71-inoculated plants enhanced the membrane stability under salinity stress and non-stress conditions.  相似文献   

16.
Growth promoting potential of Bacillus subtilis (BS) in drought stressed Abelmoschus esculentus (L.) Moench (okra) was assessed by measuring the chlorophyll stability index (CSI), chlorophyll a (Chl-a) fluorescence, leaf osmotic potential and lipid peroxidation by malondialdehyde content, emission of reactive oxygen species (ROS), osmolyte content and the activity of non-enzyme and enzyme antioxidants. BS treatment significantly increased the leaf osmotic potential, osmolyte production and the activity of non-enzyme and enzyme antioxidants under drought stress. BS treatment mitigated the drought-induced reduction in Chl a fluorescence and CSI. Concomitant increase in total sugar, proline, non-enzyme antioxidants [glutathione and ascorbate] and enzyme antioxidants like superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase modulate the intracellular ROS concentration in okra to resist the stress induced oxidative damage in BS treated plants led to fast recovery and less photodamage.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00982-8.  相似文献   

17.
Environmental stresses (salinity, drought, heat/cold, light and other hostile conditions) may trigger in plants oxidative stress, generating the formation of reactive oxygen species (ROS). These species are partially reduced or activated derivatives of oxygen, comprising both free radical and non-radical (H2O2) forms, leading to cellular damage, metabolic disorders and senescence processes. In order to overcome oxidative stress, plants have developed two main antioxidants defense mechanisms that can be classified as non-enzymatic and enzymatic systems. The first class (non-enzymatic) consists of small molecules such as vitamin (A, C and E), glutathione, carotenoids and phenolics that can react directly with the ROS by scavenging them. Second class is represented by enzymes among them superoxide dismutase, peroxidase and catalase which have the capacity to eliminate superoxide and hydrogen peroxide. In this review, we have tried to explore the related works, which have revealed the changes in the basic antioxidant metabolism of plants under various abiotic constraints.  相似文献   

18.
Manganese (Mn) is an essential element for plant growth but in excess, specially in acidic soils, it can become phytotoxic. In order to investigate whether oxidative stress is associated with the expression of Mn toxicity during early seedling establishment of rice plants, we examined the changes in the level of reactive oxygen species (ROS), oxidative stress induced an alteration in the level of non-enzymic antioxidants and activities of antioxidative enzymes in rice seedlings grown in sand cultures containing 3 and 6 mM MnCl2. Mn treatment inhibited growth of rice seedlings, the metal increasingly accumulated in roots and shoots and caused damage to membranes. Mn treated plants showed increased generation of superoxide anion (O2 .−), elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) and decline in protein thiol. The level of nonprotein thiol, however, increased due to Mn treatment. A decline in contents of reduced ascorbate (AsA) and glutathione (GSH) as well as decline in ratios of their reduced to oxidize forms was observed in Mn-treated seedlings. The activities of antioxidative enzymes superoxide dismutase (SOD) and its isoforms Mn SOD, Cu/Zn SOD, Fe SOD as well as guaiacol peroxidase (GPX) increased in the seedlings due to Mn treatment however, catalase (CAT) activity increased in 10 days old seedlings but it declined by 20 days under Mn treatment. The enzymes of Halliwell-Asada cycle, ascorbate peroxidase (APX) monodehydoascorbate reductase (MDHAR), dehyroascorbate reductase (DHAR) and glutathione reductase (GR) increased significantly in Mn treated seedlings over controls. Results suggest that in rice seedlings excess Mn induces oxidative stress, imbalances the levels of antioxidants and the antioxidative enzymes SOD, GPX, APX and GR appear to play an important role in scavenging ROS and withstanding oxidative stress induced by Mn.  相似文献   

19.
This study investigates the modulation of antioxidant defence system of Typha angustifolia after 30 days exposure of 1 mM chromium (Cr), cadmium (Cd), or lead (Pb). T. angustifolia showed high tolerance to heavy metal toxicity with no visual toxic symptom when exposed to metal stress, and Cd/Pb addition also increased plant height and biomass especially in Pb treatment. Along with increased Cr, Cd, and Pb uptake in metal treatments, there was enhanced uptake of plant nutrients including Ca and Fe, and Zn in Pb treatment. A significant increase in malondialdehyde (MDA) content and superoxide dismutase (SOD) and peroxidase (POD) activities were recorded in plants subjected to Cr, Cd, or Pb stress. Furthermore, Pb stress also improved catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities; whereas Cr stress depressed APX and GPX. The results indicate that enzymatic antioxidants and Ca/Fe uptake were important for heavy metal detoxification in T. angustifolia, stimulated antioxidative enzymes, and Ca, Fe, and Zn uptake could partially explain its hyper-Pb tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号