共查询到10条相似文献,搜索用时 93 毫秒
1.
R. D. Gulati A. L. Ooms-Wilms O. F. R. Van Tongeren G. Postema K. Siewertsen 《Hydrobiologia》1992,233(1-3):69-86
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1– d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures. 相似文献
2.
Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes 总被引:2,自引:0,他引:2
Takamura Noriko Kadono Yasuro Fukushima Michio Nakagawa Megumi Kim Baik-H. O. 《Ecological Research》2003,18(4):381-395
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP. 相似文献
3.
Zooplankton structure in the Loosdrecht lakes in relation to trophic status and recent restoration measures 总被引:1,自引:9,他引:1
R. D. Gulati 《Hydrobiologia》1990,191(1):173-188
A five-year zooplankton study (1982–86) on three shallow and highly eutrophic lakes in the Loosdrecht area (The Netherlands) did not reveal any significant changes following the considerable reduction in external P-loading (from about 1.0 g to 0.3 g P m–2 year–1) since mid-1984.The recent annual fluctuations in the rotifer and crustacean densities are within the range of those found before the restoration measure became operative. A decrease in the average size of the crustaceans and an absence of large-bodied forms reflects an increased fish predation rather than a change in the quality or quantity of their sestonic food ( < 150 µm) which continues to be dominated by filamentous cyanobacteria and Prochlorothrix hollandica, a prochlorophyte discovered in these lakes recently. 相似文献
4.
Irina Trifonova 《Hydrobiologia》1993,249(1-3):93-100
Seasonal succession of phytoplankton biomass, its diversity and its photosynthetic activity in two highly eutrophic lakes have been compared. In order to test the intermediate disturbance hypothesis, the lakes have been chosen with almost the same level of trophy but different conditions of stratification, through two ice-free periods of open water with different weather conditions.High phytoplankton diversity throughout the period of investigation was characteristic for the shallower Lake Lobardzu. The number of species here was usually more than 30 and the Shannon diversity changed from 1.2 to 4.2. Owing to the frequent external disturbances, periods characterized by autogenic succession with establishing dominance and declining diversity alternated with periods of biomass reduction and rises of diversity and photosynthetic activity. In the warmer summer of 1983, with more intense warming of bottom layers and predominance of blue-greens, phytoplankton biomass was higher and diversity lower than in the cold summer of 1982.In stratified Lake Rudusku, phytoplankton diversity and number of species were usually much lower. During the long summer stratification up to three-four dominant species of blue-greens and dinoflagellates become established and competitive exclusion leading to low diversity advanced. Some changes in biomass and diversity, were caused by zooplankton activity. 相似文献
5.
Data on some relevant environmental variables and phytoplankton species composition, collected from the hypertrophic shallow lake Albufera of Valencia (Spain) during 1980–88, were examined using Redundancy Analysis (RDA). The hydrological cycle of the lake is manipulated for rice cultivation in the area. Seasonality and the particular hydrological cycle of the lake were the principal factors influencing long-term phytoplankton dynamics. Annual or horizontal differences were less important than the seasonal factor. However, a trend of phosphate increase and underwater illumination decrease was observed between 1980 and 1988. These changes might be related to some species year-to-year variations, although in general interannual phytoplankton changes were scarce. Spatial phytoplankton differences were much smaller than physical and chemical differences, which were mainly related to loading and residence times at the different sampling zones. Shallowness, hypertrophy and the regular hydrological cycle of the Albufera for rice yield, seem to contribute to the maintenance of an almost stable and homogeneous algal community, mainly composed of filamentous cyanophytes. RDA analysis has proved to be an efficient method in yielding valuable information on phytoplankton-environment interactions and trends over a long series of data. It seems also a feasible technique to monitor the results of lake management and restoration in the future. 相似文献
6.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared
to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes
were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep
lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations
in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged
between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes)
and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred
in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the
ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring
or summer) in both lakes, and were comprised largely of copepods. 相似文献
7.
Monthly changes of physical, chemical and biological variables due a combination of artificial inflow of clean water, removal of hypolimnetic water, and diversion of sewage were studied in Lake Bled from December 1980 to December 1982.During the winter period 1981/82 the species composition of the phytoplankton changed. New species replaced those observed in previous years. We conclude that the combined effect of these three lake restoration measures was responsible for the sudden disappearance ofOscillatoria rubescens D.C. A marked decrease in some nutrients and an increase in temperature and oxygen concentration also occurred. 相似文献
8.
1. Thirty‐six years of winter meteorological and limnological measurements from four lakes in the English Lake District are analysed and related to variations in the North Atlantic Oscillation (NAO). Winter weather conditions were strongly influenced by the NAO with mild, wet winters being associated with strongly positive values of the NAO index (NAOI). 2. Lake surface and bottom temperatures were strongly positively correlated with the NAOI, with the highest correlations being recorded in the shallower lakes. 3. Variations in the NAOI also had a significant effect on the winter concentration of nitrate. In all the lakes, there was a significant negative correlation between the NAOI and the detrended winter concentration of nitrate. The key driving variable was the local air temperature, which appeared to limit the quantity of nitrate reaching the lake by increasing the amount assimilated in the surrounding catchment in mild winters. 4. Dissolved reactive phosphorus (DRP) concentrations were not significantly correlated with the NAOI in the two larger basins but significant positive correlations were recorded in the two smaller lakes. The key driving variable was the local rainfall with higher DRP concentrations being recorded after heavy rain in the lakes with a short retention time. 5. The NAOI‐related changes in rainfall also influenced the phytoplankton. In wet winters the concentration of chlorophyll in the two smaller lakes with the shortest retention time was lower and the spring growth of Asterionella formosa was delayed in the smallest lake. 6. These differential responses demonstrate how the large‐scale effects associated with the NAO can be ‘filtered’ by the physical characteristics of a particular site. 相似文献
9.
Ying Zhang Anas Ghadouani Ellie E. Prepas Bernadette Pinel-Alloul Sharon Reedyk Patricia A. Chambers Richard D. Robarts Ginette Méthot Assia Raik & Meike Holst 《Freshwater Biology》2001,46(8):1105-1119
1. The impact of whole-lake lime (slaked lime, Ca(OH)2 , and/or calcite, CaCO3 ) addition on plankton communities was evaluated in eutrophic hardwater lakes on the North American Boreal Plain.
2. Two lakes received a single treatment of lime (Ca(OH)2 at 74 or 107 mg L–1 ), two lakes received multiple treatments with Ca(OH)2 and/or CaCO3 (5–78 mg L–1 ), and four lakes were untreated and served as reference systems.
3. Over the long-term (> 1 year), phytoplankton biomass was reduced in multiple-dose lakes, but not in single-dose lakes. Cyanobacteria typically dominated the algal community in the years before, during and after lime treatment in both single- and multiple-dose lakes.
4. In the single-dose lakes, randomized intervention analysis showed no significant change in the biomass of zooplankton after lime addition. 相似文献
2. Two lakes received a single treatment of lime (Ca(OH)
3. Over the long-term (> 1 year), phytoplankton biomass was reduced in multiple-dose lakes, but not in single-dose lakes. Cyanobacteria typically dominated the algal community in the years before, during and after lime treatment in both single- and multiple-dose lakes.
4. In the single-dose lakes, randomized intervention analysis showed no significant change in the biomass of zooplankton after lime addition. 相似文献
10.
ALICE NICOLLE PER HALLGREN JESSICA
Von EINEM EMMA SOFIA KRITZBERG WILHELM GRANÉLI ANDERS PERSSON CHRISTER BRÖNMARK LARS‐ANDERS HANSSON 《Freshwater Biology》2012,57(4):684-695
1. Aquatic ecosystems in Northern Europe are expected to face increases in temperature and water colour (TB) in future. While effects of these factors have been studied separately, it is unknown whether and how a combination of them might affect phenological events and trophic interactions. 2. In a mesocosm study, we combined both factors to create conditions expected to arise during the coming century. We focused on quantifying effects on timing and magnitude of plankton spring phenological events and identifying possible mismatches between resources (phytoplankton) and consumers (zooplankton). 3. We found that the increases in TB had important effects on timing and abundance of different plankton groups. While increased temperature led to an earlier peak in phytoplankton and zooplankton and a change in the relative timing of different zooplankton groups, increased water colour reduced chlorophyll‐a concentrations. 4. Increased TB together benefitted cladocerans and calanoid copepods and led to stronger top‐down control of algae by zooplankton. There was no sign of a mismatch between primary producers and grazers as reported from other studies. 5. Our results point towards an earlier onset of plankton spring growth in shallow lakes in future with a stronger top‐down control of phytoplankton by zooplankton grazers. 相似文献