首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

2.
Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.  相似文献   

3.
Roz N  Rehavi M 《Life sciences》2003,73(4):461-470
Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.  相似文献   

4.
I attempted to isolate synaptic vesicles by gel filtration. The rat brain synaptic vesicles in a synaptosomal lysate were collected by ammonium sulfate salting-out and fractionated on a Sephacryl S-500 with a mean exclusion size of 200 nm. Peak I at the void volume contained large vesicular membranes and coated vesicles besides synaptic vesicles; Peak II consisted almost entirely of small agranular synaptic vesicles of 40-50 nm diameter; and Peak III comprised soluble proteins. Western blotting revealed that components of 72 kDa in peaks I and II reacted with an anti-H(+)-ATPase A-subunit antibody [Moriyama et al. (1995) FEBS Lett. 367, 233-236]. When examined for Mg(2+)-ATPase activity, peak I showed specific activity of 4.52 ( micromol ATP hydrolyzed/mg protein/30 min), while that of peak II was as low as 0.22. As estimated from the inhibition by bafilomycin A(1) [Bowman et al. (1988) PROC: Natl. Acad. Sci. USA 85, 7972-7976], the percentage of H(+)-ATPase as to total Mg(2+)-ATPase, 18-22%, was unchanged, indicating no accumulation of the H(+)-ATPase in peak II even on the chromatography. In brief, the small agranular synaptic vesicles in peak II showed little or no Mg(2+)-ATPase activity, although they reacted with the H(+)-ATPase antibody. The reason for this is obscure. Mg(2+)-ATPase might not be a constituent of small agranular synaptic vesicles of rat brain.  相似文献   

5.
Functional reassembly of the coated vesicle proton pump   总被引:2,自引:0,他引:2  
We have shown previously that treatment of the coated vesicle proton-translocating adenosine triphosphatase (H(+)-ATPase) with chaotropic agents results in the release of a set of peripheral polypeptides which includes the 73-, 58-, 40-, 34-, and 33-kDa subunits (Adachi, I., Puopolo, K., Marquez-Sterling, N., Arai, H., and Forgac, M. (1990) J. Biol. Chem. 265, 967-973), with a coordinate loss of H(+)-ATPase activity. In the present paper we report the functional reassembly of the coated vesicle proton pump following dissociation of the peripheral subunits. Reassembly was demonstrated by restoration of ATP-driven proton transport using both native membranes and reconstituted vesicles and by Western blot analysis using a monoclonal antibody specific for the 73-kDa subunit. Reassembly occurs by attachment of a peripheral subcomplex containing the 73-, 58-, 34-, and 33-kDa subunits together with the 40-kDa polypeptide. The reassembled H(+)-ATPase, like the native proton pump, is inhibited by N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and N,N'-dicyclohexylcarbodiimide. Reassociation shows a biphasic time dependence, with restoration of 50-60% of the starting proton transport activity in the 1st h followed by recovery of a further 20-30% of the activity after 24 h. Reassembly also shows a marked dependence on protein concentration but, unlike solubilization of the intact H(+)-ATPase complex, does not require the presence of glycerol. Despite the ability of nucleotides to promote dissociation of the peripheral complex by chaotropic agents, reassociation is not blocked by the presence of 1 mM ATP. These results thus provide the first evidence for functional reassembly of a vacuolar H(+)-ATPase complex and should be useful in further analysis of the role of individual subunits in the assembly and activity of these ATP-driven proton pumps.  相似文献   

6.
Recent biochemical studies involving 2',7'-bis-(2-carboxyethyl)-5, 6-carboxylfluorescein (BCECF)-labeled saponin-permeabilized and parasitized erythrocytes indicated that malaria parasite cells maintain the resting cytoplasmic pH at about 7.3, and treatment with vacuolar proton-pump inhibitors reduces the resting pH to 6.7, suggesting proton extrusion from the parasite cells via vacuolar H(+)-ATPase (Saliba, K. J., and Kirk, K. (1999) J. Biol. Chem. 274, 33213-33219). In the present study, we investigated the localization of vacuolar H(+)-ATPase in Plasmodium falciparum cells infecting erythrocytes. Antibodies against vacuolar H(+)-ATPase subunit A and B specifically immunostained the infecting parasite cells and recognized a single 67- and 55-kDa polypeptide, respectively. Immunoelectron microscopy indicated that the immunological counterpart of V-ATPase subunits A and B is localized at the plasma membrane, small clear vesicles, and food vacuoles, a lower extent being detected at the parasitophorus vacuolar membrane of the parasite cells. We measured the cytoplasmic pH of both infected erythrocytes and invading malaria parasite cells by microfluorimetry using BCECF fluorescence. It was found that a restricted area of the erythrocyte cytoplasm near a parasite cell is slightly acidic, being about pH 6.9. The pH increased to pH 7.3 upon the addition of either concanamycin B or bafilomycin A(1), specific inhibitors of vacuolar H(+)-ATPase. Simultaneously, the cytoplasmic pH of the infecting parasite cell decreased from pH 7.3 to 7.1. Neither vanadate at 0.5 mm, an inhibitor of P-type H(+)-ATPase, nor ethylisopropylamiloride at 0.2 mm, an inhibitor of Na(+)/H(+)-exchanger, affected the cytoplasmic pH of erythrocytes or infecting parasite cells. These results constitute direct evidence that plasma membrane vacuolar H(+)-ATPase is responsible for active extrusion of protons from the parasite cells.  相似文献   

7.
Synaptic vesicles contain a H+-ATPase that generates a proton electrochemical gradient (delta mu H+) required for the uptake of neurotransmitters into the organelles. In this study, the synaptic vesicle H+-ATPase was examined for structural and functional similarities with other identified ATPases that generate a delta mu H+ across membranes. The synaptic vesicle H+-ATPase displayed immunological similarity with the 115-, 72-, and 39-kDa subunits of a vacuolar-type H+-ATPase purified from chromaffin granules. Functionally, the ATP-dependent H+ pumping across synaptic vesicles and ATP hydrolysis were sensitive to the sulfhydryl-modifying reagents, N-ethylmaleimide and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole, at concentrations known to affect vacuolar-type H+-ATPases. In addition, as with vacuolar-type H+-ATPases, the presence of NO3-, SO4(2-), or F- inhibited the generation of a delta mu H+, but addition of vanadate or oligomycin had no effect. The delta mu H+ is a function of the pH gradient (delta pH) and membrane potential (delta psi sv) across the synaptic vesicle. Acidification (delta pH) of the synaptic vesicle interior was enhanced in the presence of permeant anions, such as Cl-, or the K+ ionophore, valinomycin. In the absence of permeant anions, the H+-ATPase generated a delta psi sv that effected the transport of L-glutamate into the synaptic vesicles. Dissipation of delta psi sv by incubation with increased external Cl- or nigericin resulted in the abolition of glutamate uptake, despite the continued maintenance of a delta mu H+ across the synaptic vesicle as a substantial delta pH. The results suggest that the synaptic vesicle H+-ATPase is of a vacuolar type and energizes the uptake of anionic glutamate by virtue of the delta psi sv component of the delta mu H+ it generates.  相似文献   

8.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulated spermine and spermidine in the presence of ATP, not in the presence of ADP. Spermine and spermidine transport at pH 7.4 showed saturation kinetics with Km values of 0.2 mM and 0.7 mM, respectively. Spermine uptake was competitively inhibited by spermidine and putrescine, but was not affected by seven amino acids, substrates of active transport systems of vacuolar membrane. Spermine transport was inhibited by the H(+)-ATPase-specific inhibitors bafilomycin A1 and N,N'-dicyclohexylcarbodiimide, but not by vanadate. It was also sensitive to Cu2+ or Zn2+ ions, inhibitors of vacuolar H(+)-ATPase. Both 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847) and nigericin blocked completely the spermine uptake, but valinomycin did not. [14C]Spermine accumulated in the vesicles was exchangeable with unlabeled spermine and spermidine. However, it was released by a protonophore only in the presence of a counterion such as Ca2+. These results indicate that a polyamine-specific transport system depending on a proton potential functions in the vacuolar membrane of this organism.  相似文献   

9.
Cholinergic synaptic vesicles from the electric organ of Torpedo marmorata are associated with a Mg2+-ATPase insensitive to ouabain and oligomycin. Treatment of vesicle membranes with dichloromethane releases a Mg2+-ATPase with apparent molecular mass of around 250 kDa as determined by gel filtration. The vesicular ATPase resembles the mitochondrial F1-ATPase in these properties. Gel electrophoresis of the solubilized ATPase shows however that only a single 50-kDa band is present as compared to the alpha-subunit (52 kDa) and beta-subunit (50 kDa) of electric organ mitochondrial F1-ATPase present in this range of molecular mass range. In agreement, covalent photoaffinity labelling of isolated vesicles with azido-ATP shows a 50-kDa band. Vesicle ghosts were found to accumulate [14C]methylamine in an ATP-dependent manner indicating the presence of an inwardly directed proton pump. We conclude that cholinergic vesicles contain a proton pump probably driven by the Mg2+-ATPase here described, which generates an electrochemical gradient across the vesicle membrane and is necessary for uptake and storage of acetylcholine within the vesicles.  相似文献   

10.
Dynamic Storage of Dopamine in Rat Brain Synaptic Vesicles In Vitro   总被引:2,自引:0,他引:2  
Abstract: The dynamics of catecholamine storage were studied in highly purified, small synaptic vesicles from rat brain both during active uptake or after inhibiting uptake with reserpine, tetrabenazine, or removal of external dopamine. To assess turnover during active uptake, synaptic vesicles were allowed to accumulate [3H]dopamine ([3H]DA) for ~10 min and then diluted 20-fold into a solution containing unlabeled DA under conditions such that active uptake could continue. After dilution, [3H]DA was lost with single exponential kinetics at a half-time of ~4 min at 30°C in 8 mM Cl? medium, in which both voltage and H+ gradients are present in the vesicles. In 90 mM Cl? medium, in which high H+ and Cl? gradients but no voltage gradient are present, [3H]DA escaped at a half-time of ~7 min. In both high and low Cl? media, ~40% of [3H]DA efflux was blocked by reserpine or tetrabenazine. The residual efflux also followed first-order kinetics. These results indicate that two efflux pathways were present, one dependent on DA uptake (and thus on the presence of external DA) and the other independent of uptake, and that both pathways function regardless of the type of electrochemical H+ gradient in the vesicles. The presence of both uptake-dependent and -independent efflux was observed in experiments using DA-free medium, instead of uptake inhibitors, to prevent uptake. Uptake-independent efflux showed molecular selectivity for catecholamines; [14C]DA was lost about three times faster than [3H]norepinephrine after adding tetrabenazine directly (without dilution) to vesicles that had taken up comparable amounts of each amine. In addition, the first-order rate constant for uptake-independent efflux showed little change over a 60-fold range of internal DA concentrations, which suggests that this pathway had a high transport capacity. All efflux was blocked at 0°C, suggesting that efflux did not occur through a large pore. There was little or no change in the proton gradient in synaptic vesicles, monitored by [14C]methylamine equilibration, during the experimental manipulations used here. Thus, the driving force for catecholamine uptake remained approximately constant. The physiological role of uptake-independent efflux could be to allow the monoamine content of synaptic vesicles to be regulated over a time range of minutes and, thereby, control the amount released by exocytosis. These results imply that catecholamines turn over with a half-time of minutes during active uptake by brain synaptic vesicles in vitro.  相似文献   

11.
Incubation of oat root plasma membrane vesicles in the presence of ATP with trypsin or chymotrypsin increased the rate of ATP hydrolysis and ATP-dependent proton pumping by the plasma membrane H(+)-ATPase. Proton pumping was stimulated more than 200%, whereas ATP hydrolytic activity was stimulated about 30%. The Km (ATP) for both proton pumping and ATP hydrolysis was lowered from about 0.3 mM to below 0.1 mM. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of trypsin-treated plasma membranes revealed a decrease in a 100-kDa band and the appearance of a 93-kDa band. Western blot analysis using antibodies against the H(+)-ATPase showed that both of these bands represented the H(+)-ATPase and suggested that a 7-kDa segment was released. Extensive treatment with carboxypeptidase A also activated the H(+)-ATPase indicating that the 7-kDa segment originated from the C terminus.  相似文献   

12.
We have previously demonstrated reassembly of a functional vacuolar (H+)-ATPase from clathrin-coated vesicles using the dissociated peripheral domain (V1) and the membrane-bound integral domain (V0) (Puopolo, K., and Forgac, M. (1990) J. Biol. Chem. 265, 14836-14841). We have used this reassembly procedure to test the function of the 40-kDa subunit of the coated vesicle (H+)-ATPase. In the absence of V0, a fraction of the peripheral subunits reassemble into a V1 subcomplex which contains the 73-kDa A subunit, the 58-kDa B subunit, and the 34- and 33-kDa subunits but lacks the 40-kDa subunit. This subcomplex, which sediments with a mass of approximately 500 kDa, can be separated from the remaining monomeric subunits (and the 40-kDa subunit) by density gradient sedimentation. When dissociated with 0.36 M KI, 2.5 mM ATP, and 2.5 mM MgSO4, and added to membranes from which V1 has been dissociated, this V1(-40 kDa) subcomplex is able to reassemble with V0 to give a (H+)-ATPase with a proton pumping activity approximately half that obtained in the presence of the 40-kDa subunit. The undissociated subcomplex is not competent for assembly of a functional (H+)-ATPase. Interestingly, the monomeric fraction obtained from density gradient sedimentation contains the 40-kDa subunit but lacks the 34-kDa subunit. This monomeric fraction is nevertheless also able to assemble with V0 to give a functional proton pump. The V1V0 complexes assembled in the absence of either the 40- or 34-kDa subunits, while active, are not stable to detergent solubilization and immunoprecipitation, suggesting that both of these subunits play a role in stabilization of the (H+)-ATPase complex. Evidence for interaction between the 40- and 33-kDa subunits is also presented.  相似文献   

13.
Upon treatment with sodium carbonate, rat brain synaptic vesicles lost ATP-dependent H+ transport and released major polypeptide components (about 72, 57, 41, 34 and 33 kDa). These polypeptides, consisting about 15% of the total protein, were identified as subunits of H(+)-ATPase by immunoblotting with antibodies against H(+)-ATPase from chromaffin granules. The same treatment also abolished the ATP-dependent, bafilomycin-sensitive uptakes of glutamate, serotonin and gamma-aminobutyrate by the synaptic vesicles. These results indicated that H(+)-ATPase is a major constituent of the vesicles (consisting about 20% of their total protein) and is a primary pump for accumulation of neurotransmitters.  相似文献   

14.
The mediatophore is a presynaptic membrane protein that has been shown to translocate acetylcholine (ACh) under calcium stimulation when reconstituted into artificial membranes. The mediatophore subunit, a 15-kDa proteolipid, presents a very high sequence homology with the N,N'-dicyclohexylcarbodiimide (DCCD)-binding proteolipid subunit of the vacuolar-type H(+)-ATPase. This prompted us to study the effect of DCCD, a potent blocker of proton translocation, on calcium-dependent ACh release. The present work shows that DCCD has no effect on ACh translocation either from Torpedo synaptosomes or from proteoliposomes reconstituted with purified mediatophore. However, using [14C]DCCD, we were able to demonstrate that the drug does bind to the 15-kDa proteolipid subunit of the mediatophore. These results suggest that although the 15-kDa proteolipid subunits of the mediatophore and the vacuolar H(+)-ATPase may be identical, different domains of these proteins are involved in proton translocation and calcium-dependent ACh release and that the two proteins have a different membrane organization.  相似文献   

15.
The V-ATPases are a family of ATP-dependent proton pumps responsible foracidification of intracellular compartments in eukaryotic cells. This reviewfocuses on the the V-ATPases from clathrin-coated vesicles and yeastvacuoles. The V-ATPase of clathrin-coated vesicles is a precursor to thatfound in endosomes and synaptic vesicles, which function in receptorrecycling, intracellular membrane traffic, and neurotransmitter uptake. Theyeast vacuolar ATPase functions to acidify the central vacuole and to drivevarious coupled transport processes across the vacuolar membrane. TheV-ATPases are composed of two functional domains. The V1 domain isa 570-kDa peripheral complex composed of eight subunits of molecular weight70—14 kDa (subunits A—H) that is responsible for ATP hydrolysis.The V0 domain is a 260-kDa integral complex composed of fivesubunits of molecular weight 100—17 kDa (subunits a, d, c, c8 and c9)that is responsible for proton translocation. Using chemical modification andsite-directed mutagenesis, we have begun to identify residues that play arole in ATP hydrolysis and proton transport by the V-ATPases. A centralquestion in the V-ATPase field is the mechanism by which cells regulatevacuolar acidification. Several mechanisms are described that may play a rolein controlling vacuolar acidification in vivo. One mechanisminvolves disulfide bond formation between cysteine residues located at thecatalytic nucleotide binding site on the 70-kDa A subunit, leading toreversible inhibition of V-ATPase activity. Other mechanisms includereversible assembly and dissociation of V1 and V0domains, changes in coupling efficiency of proton transport and ATPhydrolysis, and regulation of the activity of intracellular chloride channelsrequired for vacuolar acidification.  相似文献   

16.
Previous purification and characterization of the yeast vacuolar proton-translocating ATPase (H(+)-ATPase) have indicated that it is a multisubunit complex consisting of both integral and peripheral membrane subunits (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095; Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989) J. Biol. Chem. 264, 19236-19244). We have obtained monoclonal antibodies recognizing the 42- and 100-kDa polypeptides that were co-purified with vacuolar ATPase activity. Using these antibodies we provide further evidence that the 42-kDa polypeptide, a peripheral membrane protein, and the 100-kDa polypeptide, an integral membrane protein, are genuine subunits of the yeast vacuolar H(+)-ATPase. The synthesis, assembly, and targeting of three of the peripheral subunits (the 69-, 60-, and 42-kDa subunits) and two of the integral membrane subunits (the 100- and 17-kDa subunits) were examined in mutant yeast cells containing chromosomal deletions in the TFP1, VAT2, or VMA3 genes, which encode the 69-, 60-, and 17-kDa subunits, respectively. The steady-state levels of the various subunits in whole cell lysates and purified vacuolar membranes were assessed by Western blotting, and the intracellular localization of the 60- and 100-kDa subunits was also examined by immunofluorescence microscopy. The results suggest that the assembly and/or the vacuolar targeting of the peripheral subunits of the yeast vacuolar H(+)-ATPase depend on the presence of all three of the 69-, 60-, and 17-kDa subunits. The 100-kDa subunit can be transported to the vacuole independently of the peripheral membrane subunits as long as the 17-kDa subunit is present; but in the absence of the 17-kDa subunit, the 100-kDa subunit appears to be both unstable and incompetent for transport to the vacuole.  相似文献   

17.
J W Hell  P R Maycox  H Stadler    R Jahn 《The EMBO journal》1988,7(10):3023-3029
Uptake of GABA was demonstrated in rat brain synaptic vesicles which were prepared by a new and efficient procedure. The uptake activity co-purified with the synaptic vesicles during the isolation procedure. The purity of the vesicle fraction was rigorously examined by analysis of marker enzymes and marker proteins and also by immunogold electron microscopy using antibodies against p38 (synaptophysin). Contamination by other cellular components was negligible, indicating that GABA uptake by the synaptic vesicle fraction is specific for synaptic vesicles and not due to the presence of other structure possessing GABA uptake or binding activities. GABA uptake was ATP dependent and similar to the uptake of glutamate, which was assayed for a comparison. Both uptake activities were independent of sodium. They were inhibited by the uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, indicating that the energy for the uptake is provided by an electrochemical proton gradient. This gradient is generated by a proton ATPase of the vacuolar type as suggested by the effects of various ATPase inhibitors on neurotransmitter uptake and proton pumping. Competition experiments revealed that the transporters for GABA and glutamate are selective for the respective neurotransmitters.  相似文献   

18.
Inhibition of vesicular uptake of monoamines by hyperforin   总被引:5,自引:0,他引:5  
Roz N  Mazur Y  Hirshfeld A  Rehavi M 《Life sciences》2002,71(19):2227-2237
Hyperforin is the major active ingredient of Hypericum perforatum (St John's Wort), a traditional antidepressant medication. This study evaluated its inhibitory effects on the synaptic uptake of monoamines in rat forebrain homogenates, comparing the nature of the inhibition at synaptic and vesicular monoamine transporters. A hyperforin-rich extract inhibited with equal potencies the sodium-dependent uptake of the monoamine neurotransmitters serotonin [5-HT], dopamine [DA] and norepinephrine [NE] into rat brain synaptosomes. Hyperforin inhibited the uptake of all three monoamines noncompetitively, in marked contrast with the competitive inhibition exerted by fluoxetine, GBR12909 or desipramine on the uptake of these monoamines. Hyperforin had no inhibitory effect on the binding of [3H]paroxetine, [3H]GBR12935 and [3H]nisoxetine to membrane presynaptic transporters for 5-HT, DA and NE, respectively. The apparent presynaptic inhibition of monoamine uptake could reflect a "reserpine-like mechanism" by which hyperforin induced release of neurotransmitters from synaptic vesicles into the cytoplasm. Thus, we assessed the effects of hyperforin on the vesicular monoamine transporter. Hyperforin inhibited with equal potencies the uptake of the three tritiated monoamines to rat brain synaptic vesicles. Similarly to the synaptosomal uptake, the vesicular uptake was also noncompetitively inhibited by hyperforin. Notably, hyperforin did not affect the direct binding on [3H]dihydrotetrabenazine, a selective vesicular monoamine transporter ligand, to rat forebrain membranes. Our results support the notion that hyperforin interferes with the storage of monoamines in synaptic vesicles, rather than being a selective inhibitor of either synaptic membrane or vesicular monoamine transporters.  相似文献   

19.
Quinacrine was used to visualize the intracellular pH changes in the yeast strain Saccharomyces cerevisiae RXII occurring after exposure to four recently-synthesized lysosomotropic drugs: DM-11, PY-11, PYG-12s and DMAL-12s. The cells took up quinacrine, mostly accumulating it in their vacuoles. DM-11 and PY-11 gave rise to diffuse quinacrine fluorescence throughout the cells, with the vacuoles staining to a somewhat greater extent than the cytosol. This quinacrine-detected overall acidification of the cell interior is very probably caused by blocking of plasma membrane H(+)-ATPase. PYG-12s gave rise to a strong vacuolar accumulation of the dye. Like the vacuolar ATPase inhibitor bafilomycin A(1), DMAL-12s strongly lowered the intensity of quinacrine fluorescence. Owing to its low pK(a), it can penetrate rapidly into the cells and may inhibit vacuolar H(+)-ATPase and prevent quinacrine-detectable vacuolar acidification without causing strong cell acidification. Since these drugs were found to penetrate into the cells, their lack of effect may reflect a higher resistance of both plasma membrane H(+)-ATPase and vacuolar ATPase to the drugs. Our data indicate that the lysosomotropic drugs under study have a dual action. On entering the cell, they cause intracellular acidification, very probably by inhibiting plasma membrane H(+)-ATPase and curtailing active proton pumping from the cells. Furthermore, they interfere with the function of V-type ATPase, causing vacuolar alkalinization and eventually cell death.  相似文献   

20.
Zhang Z  Nguyen KT  Barrett EF  David G 《Neuron》2010,68(6):1097-1108
Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (~ 13 nM average peak increase in [H(+)]), followed by a prolonged alkalinization (~ 30 nM peak decrease in [H(+)]) that outlasts the stimulation train. The alkalinization is selectively eliminated by blocking vesicular exocytosis with botulinum neurotoxins, and is prolonged by the endocytosis-inhibitor dynasore. Blocking H(+) pumping by vesicular H(+)-ATPase (with folimycin or bafilomycin) suppresses stimulation-induced alkalinization and reduces endocytotic uptake of FM1-43. These results suggest that H(+)-ATPase, known to transfer cytosolic H(+) into prefused vesicles, continues to extrude cytosolic H(+) after being exocytotically incorporated into the plasma membrane. The resulting cytosolic alkalinization may facilitate vesicular endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号