首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
【目的】对在中国有分布的库蚊属Culex种(亚种)的COⅠ序列和ITS2序列进行测序,构建和讨论这些种(亚种)的分子系统发育关系。【方法】测定了库蚊属20个种(亚种)的COⅠ和ITS2序列,并从NCBI数据库中下载了库蚊属另外20个种(亚种)的COⅠ和3个种(亚种)的ITS2序列。对库蚊属40个种(亚种)的COⅠ序列和其中23个种(亚种)的ITS2序列进行碱基构成、种间遗传距离和饱和度分析,并对COⅠ+ITS2序列进行ILD(incongruence length difference)检验。分别使用2种分子数据集(COⅠ和ITS2)的核苷酸序列,用最大似然法(ML)、贝叶斯法(BI)、邻接法(NJ)和最大简约法(MP)推断这些种的系统发育关系。通过Kishino-Hasegawa(KH)和ShimodairaHasegawa(SH)检验评估这4种系统树间的差异,确定最为合理的系统发育树。【结果】本研究新测序获得20种(亚种)的COⅠ和ITS2序列的长度范围分别为625~685 bp和300~559 bp。COⅠ和ITS2序列在库蚊属成对蚊种间的遗传距离分别是0.002~0.198和0.006~1.807。库蚊属23个种(亚种)的COⅠ+ITS2序列的ILD检验结果显示,数据集具有不相容性,因此COⅠ+ITS2序列不适用于这些种(亚种)的系统发育研究。经KH和SH检验显示,4种系统发育树中,基于COⅠ序列构建的BI树最为合理,而基于ITS2序列构建的MP树最为合理。基于COⅠ核苷酸序列所构建的BI树显示,除幼小库蚊Cx.infantulus和短须库蚊Cx.brevipalpis外,各亚属间成员聚类结果与传统的形态学归类结果吻合;路蚊亚属Lutiza和包蚊亚属Barraudius都归入库蚊亚属Culex内;梅蚊亚属Maillotia和新库蚊亚属Nexoculex聚为一支;库状蚊亚属Culiciomyia、真黑蚊亚属Eumelanomyia和簇角蚊亚属Lophoceramyia均显示为单系。基于ITS2序列所构建的MP树显示,各亚属间和种(亚种)间关系混乱。【结论】重建的分子系统发育树表明库蚊亚属不是一个单系群。在重建库蚊属系统发育关系时,相较于ITS2和COⅠ+ITS2,COⅠ是更为理想的分子标记。本研究构建的分子系统发育关系为中国库蚊属中各亚属和各种(亚种)之间的亲缘关系的研究奠定了基础。  相似文献   

2.
吴静  马雅军  马颖 《昆虫学报》2010,53(9):1030-1038
【目的】应用mtDNA和rDNA基因特征重建中国按蚊属塞蚊亚属已知种类的系统发育关系, 以阐明亚属内各蚊种的亲缘关系。【方法】对采自中国的按蚊属塞蚊亚属Anopheles (Cellia) 20种蚊的mtDNA-COⅡ和 rDNA-28S-D3序列进行测定和分析, 以按蚊属按蚊亚属Anopheles (Anopheles)的中华按蚊An. (An.) sinensis和赫坎按蚊An. (An.) hyrcanus为外群, 采用COⅡ和D3单基因, 以及“COⅡ+D3”联合数据组以邻接法(NJ)、 最大简约法(MP)、 最大似然法(ML)和贝叶斯法(BI)等重建这些种类的系统发育树。【结果】 mtDNA-COⅡ和rDNA-28S-D3序列的长度范围分别为685 bp和375~410 bp, 在塞蚊亚属蚊种间的遗传距离分别为0.015~0.117和0.003~0.111。各系统树显示外群被合理分开,除在COⅡ树中新塞蚊系为并系外,各系均聚为单系群,新迈蚊系和迈蚊系亲缘关系最近。联合数据组构建的系统合意树显示中国塞蚊亚属各蚊种形成4支,除伪威氏按蚊与多斑按蚊种团未聚为单系群外,其他各种团和复合体成员种均分别聚在一起,各分支的置信值均大于50%。【结论】本研究获得的分子系统发育树清楚地显示了中国按蚊属塞蚊亚属各种类及系之间的系统发育关系, 对其分类和防治研究具有参考价值。  相似文献   

3.
【目的】对林氏按蚊Anopheles lindesayi完整的线粒体基因组进行测序及分析,依据已知的线粒体基因组构建并讨论按蚊属蚊虫的分子系统发育关系。【方法】对林氏按蚊线粒体基因组进行测序、注释,并对其基本特征和基本组成进行分析。基于串联的13个蛋白质编码基因的核苷酸序列和氨基酸序列,用ML法和贝叶斯法构建林氏按蚊和按蚊属其他32种蚊虫的系统发育树,据此探讨按蚊属蚊虫的系统发育关系和系统分类。【结果】林氏按蚊线粒体基因组全长为15 366 bp,包含13个蛋白质编码基因,22个tRNA基因,2个rRNA基因和一段控制区。林氏按蚊线粒体基因组呈现明显的AT偏斜和GC偏斜,AT偏斜为正,GC偏斜为负。除了COX1使用TCG和ND5使用GTG作为起始密码子以外,其他蛋白质编码基因的起始密码子均遵循ATN原则;终止密码子为TAA或者T。除了tRNASer(AGN)以外,其他的tRNA基因均呈现典型的三叶草二级结构。控制区AT含量最高,为94.54%。滑窗分析显示蛋白质编码基因是用于构建亚属或属水平系统发育关系的最佳分子标记。系统发育树强烈支持塞蚊亚属Cellia、按蚊亚属Anopheles、徕蚊亚属Nyssorhynchus和柯特蚊亚属Kerteszia均为单系群。小五斑按蚊An. atroparvus和四斑按蚊An. quadrimaculatus A这两个种聚到一起,从传统的形态分类上讲,它们和林氏按蚊均属于按蚊亚属按蚊系蚊虫。但本研究构建的4个系统发育树均显示,(小五斑按蚊An. atroparvus+四斑按蚊An. quadrimaculatus A)和林氏按蚊被属于迈蚊系的中华按蚊分开,这为两个系的分类提供了新的论点。【结论】本研究获得了林氏按蚊的完整的线粒体基因组,探析了按蚊属的线粒体基因组特征和系统发育关系,为进一步研究蚊科线粒体基因组和系统发育关系提供了依据。  相似文献   

4.
记述丽大蚊亚属Formotipula 2新种:茂兰丽大蚊Tipula (Formotipula) maolana sp. nov.,泸定丽大蚊Tipula (Formotipula) ludingana sp. nov.;以及3新记录种:二叉弯尾丽大蚊Tipula (Formotipula) decurvans Alexander,指突丽大蚊Tipula (Formotipula) dikchuensis Edwards,黑尾丽大蚊Tipula (Formotipula) melanopyga Edwards,并对1已知种黑刺丽大蚊Tipula (Formotipula) melanomera gracilispina Savchenko作了补充描记。文中还编制了该亚属世界种类检索表。  相似文献   

5.
张明  张东 《昆虫知识》2013,50(1):71-85
本研究在Pape(1996)提出的麻蝇属(双翅目:麻蝇科)分类系统基础上,选取麻蝇属54个物种(分属于30个亚属),基于线粒体COI基因片段,结合雄性成蝇尾器形态特征,对所选取的30个亚属进行了DNA分类研究,初步探明了各亚属的分类地位与系统发育关系.麻蝇属30个亚属内的平均遗传距离为6.0%(1.8%~11.0%),各亚属间的平均遗传距离为10.1%(5.2% ~16.1%),亚属内与亚属间遗传距离差异较为明显,说明COI基因片段对麻蝇属各亚属级阶元能进行有效区分.  相似文献   

6.
本研究在Pape(1996)提出的麻蝇属(双翅目:麻蝇科)分类系统基础上,选取麻蝇属54个物种(分属于30个亚属),基于线粒体COⅠ基因片段,结合雄性成蝇尾器形态特征,对所选取的30个亚属进行了DNA分类研究,初步探明了各亚属的分类地位与系统发育关系。麻蝇属30个亚属内的平均遗传距离为6.0%(1.8%11.0%),各亚属间的平均遗传距离为10.1%(5.2%11.0%),各亚属间的平均遗传距离为10.1%(5.2%16.1%),亚属内与亚属间遗传距离差异较为明显,说明COⅠ基因片段对麻蝇属各亚属级阶元能进行有效区分。  相似文献   

7.
我国的蓑藓属植物形态变异式样复杂,分类问题多.DNA条形码技术是一种新的物种鉴定技术.本研究以采自浙江、福建、云南、广西、四川等省的蓑藓属(Macromitrium)7个物种及其外类群直叶藓Macrocoma tenue subsp. sullivantii和火藓Schlotheimia grevilleana的38份标本为对象,获得了它们的叶绿体基因trnL、trnG、psbT和rps4序列,基于这些基因的不同组合构建了15棵贝叶斯系统发育树,获得了相应的蓑藓属植物的物种识别率、种内和种间的遗传距离.发现基于trnL-rps4、trnL-trnG-rps4、trnL-psbT-rps4、trnG-psbT-rps4和trnL-trnG-rps4-psbT等5个组合能够较好地识别本研究中蓑藓属植物,均得到了100%的物种识别率.考虑到扩增和测序的成功率和得到的7种蓑藓属植物的系统发育关系,建议将trnL-trnG-psbT组合用于蓑藓属植物的系统发育分析和物种识别的DNA条形码.  相似文献   

8.
应用rDNA-ITS2序列,采用邻接法(NJ)、最大简约法(MP)和最大似然法(ML),以按蚊亚属Anopheles的中华按蚊An.(An.)sinensis和赫坎按蚊An.(An.)hyrcanus为外群,对采自中国的按蚊属Anopheles塞蚊亚属Cellia 21种蚊进行了系统发育分析.结果表明:rDNA-ITS...  相似文献   

9.
在中国学者夏凯龄的分类系统中,剑角蝗科Acrididae一直被看作是单系群,包含6个亚科。但是,近年来的研究对其单系性争议较大。为探讨其单系性和剑角蝗属等6属的系统发育关系,我们测定了剑角蝗科14种蝗虫的16S rRNA基因部分序列,并从GenBank中下载了1种蝗虫的同源序列。以蚱科的2个种作外群,用NJ、MP及ML法重建系统发生树。由三棵分子系统树中得出的系统发生关系与中国的分类系统差别较大,都不支持剑角蝗科是单系群,但与国外Kevan的系统相一致,提示我们国内的分类系统亟待修改和完善。长腹蝗亚科与斑腿蝗科的亲缘关系要近于与剑角蝗科的其他种类的关系。另外,尽管所测的红足剑角蝗和上海剑角蝗的16S rDNA的片段序列完全相同,我们仍不能断定二者是同一个物种[动物学报52 (2) : 302 -308 , 2006]。  相似文献   

10.
中国锦鸡儿属的分子系统发育   总被引:1,自引:0,他引:1  
测定了中国锦鸡儿属Caragana各属下分类群20个代表种的ITS、trnL-F和trnS-G序列.基于3种DNA片段的单独分析所获得的系统发育树具有相似的拓扑结构;3种片段的合并分析提高了各分支的支持度,并获得了相似的系统发育树.落轴亚属subgen.Caragana的种类构成了一个在系统树上首先分化出来的单系分支,与形态特征和地理分布的研究一致.短齿系ser. Occidentales和长齿系ser. Bracteolatae的代表种构成了1个单独的分支,因此短齿系应被放入长齿系所属刺叶组sect.Longspina 而不是针刺组sect.Spinosae或sect.Pruinosa.分子系统学证据支持依据叶片宽窄在掌叶组sect.Frutescentes中再划分2个系的形态学研究结论;但Ser.Dasyphyllae和针刺系ser.Spinosae的亲缘关系较近,系统发育分析的结果似乎不支持在针刺组中单独划分2个系.宿轴类的物种聚成一个单系的分支,因此应被处理为一个组--鬼箭组sect.Jubatae;荚果里面被毛和无毛的种类各自构成2个小支,支持依据该特征在组下分系.系统树显示Sanczir定义的sect.Tragacanthoides然为多系类群,应将该组中所包含的刺叶组、针刺组、和鬼箭组的种类划分出来.基于ITS的遗传距离表明卷叶锦鸡儿C. ordosica与藏锦鸡儿C, tibetica应该是2个不同的种.  相似文献   

11.
The genus Etheostoma is the most diverse clade of freshwater fishes in North America. While studies have been performed with complete sampling of a single subgenus, none have included representatives of all remaining subgenera. The subgenus Oligocephalus is the largest, consisting of 25-27 species in four species groups, and its monophyly has never been clearly demonstrated. The monophyly of this subgenus and its constituent groups was tested using parsimony and Bayesian analyses of ND2 (mtDNA) and the first intron of S7 (nDNA) with complete species sampling from Oligocephalus and complete subgeneric sampling from Etheostoma. Although the subgenus Oligocephalus was not recovered as a monophyletic group in any analyses, monophyletic E. whipplei, Southwestern Darter, and E. spectabile (in part) species groups were recovered in all analyses. All analyses agree that E. okaloosae and both subspecies of E. hopkinsi are not closely related to other members of the subgenus Oligocephalus. E. exile is, however, presenting the strongest evidence yet that recognition of the subgenus Boleichthys is unwarranted.  相似文献   

12.
Several members of the dipteran family Tephritdae are serious pests because females lay eggs in ripening fruit. The genus Bactrocera is one of the largest within the family with over 500 described species arranged in 28 subgenera. The phylogenetic relationships among the various species and subgenera, and the monophyly of specific groups have not been examined using a rigorous phylogenetic analysis. Therefore, phylogenetic relationships among 24 Bactrocera species belonging to 9 subgenera were inferred from DNA sequence of portions of the mitochondrial 16S rRNA, cytochrome oxidase II, tRNA(Lys), and tRNA(Asp) genes. Two morphological characters that traditionally have been used to define the four groups within the subgenus Bactrocera were evaluated in a phylogenetic context by mapping the character states onto the parsimony tree. In addition, the evolutionary trend in male-lure response was evaluated in a phylogenetic context. Maximum parsimony analyses suggested the following relationships: (1) the genus Bactrocera is monophyletic, (2) the subgenus B. (Zeugodacus) is paraphyletic, (3) the subgenus B. (Daculus) is a sister group to subgenus B. (Bactrocera), and (4) the subgenus B. (Bactrocera) is monophyletic. The mapping analyses suggested that the morphological characters exhibit a simple evolutionary transition from one character state to another. Male-lure response was identified as being a labile behavior that has been lost on multiple occasions. Cue-lure response was plesiomorphic to methyl-eugenol response, and the latter has evolved independently within the Bactrocera and Zeugodacus groups of subgenera. The implications of our results for devising a coherent, consolidated classification for Bactrocera is discussed.  相似文献   

13.
Drosophila species are extensively used in biological research; yet, important phylogenetic relationships within the genus and with related genera remain unresolved. The combined data for three genes (Adh, Sod, and Gpdh) statistically resolves outstanding issues. We define the genus Drosophila inclusively so as to include Scaptomyza and Zaprionus (considered distinct genera in the taxonomy of Wheeler, 1981) but excluding Scaptodrosophila. The genus Drosophila so defined is monophyletic. The subgenus Sophophora (including the melanogaster, obscura, and willistoni groups) is monophyletic and the sister clade to all other Drosophila subgenera. The Hawaiian Drosophila (including Scaptomyza) is a monophyletic group, but the subgenus Drosophila is not monophyletic, because the immigrans group is more closely related to the subgenus Hirtodrosophila than to other species of the subgenus Drosophila, such as the virilis and repleta groups.  相似文献   

14.
The Afrotropical fruit fly genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees produced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimodaira-Hasegawa test, they do not reject monophyly of Ceratitis.  相似文献   

15.
The taxonomic and phylogenetic concepts within the Sargassum C. Agardh (Sargassaceae) species complex were evaluated through molecular phylogenetic analyses using portions of the chloroplast encoded rbcLS Operon. According to more conservative sequences (rbcL), Turbinaria (Turner) J. Agardh is a close and well‐supported sister lineage to the Sargassum species complex and an appropriate external outgroup for analyses of subgenera and subsections within Sargassum. Both rbcL and more rapidly evolving rbcLS spacer sequences indicated that the East Asiatic genus Myagropsis (Mertens et Turner) Fensholt, along with Sargassum sinicola Setchell et Gardner, represent the closest lineage to Sargassum and form appropriate internal outgroups. The rbcLS spacer region supported three of four subgeneric designations by J. Agardh and sectional levels within the subgenus Sargassum. However, some aspects of Agardh's system were not supported: many of the subsectional ranks or the phyletic concepts; Phyllotrichia was not monophyletic as a subgenus, and its species were also not the most ancestral of Sargassum; and subgenus Sargassum was not the most derived subgenus within the genus. This modern phylogeny suggests a deep evolutionary history for subgenus Sargassum with rapid speciation in closely related subsections and series, and a sister relationship between subgenera Arthrophycus and Bactrophycus.  相似文献   

16.
Ainscough, B.J., Breinholt, J.W., Robison, H.W. & Crandall, K.A. (2013). Molecular phylogenetics of the burrowing crayfish genus Fallicambarus (Decapoda: Cambaridae). —Zoologica Scripta, 42, 306–316. The crayfish genus Fallicambarus contains 19 species of primary burrowing freshwater crayfish divided into two distinct subgenera. We test current hypotheses of the phylogenetic relationships among species within the genus as well as the monophyly of the genus. Our study samples all 19 species for five gene regions (both nuclear and mitochondrial) to estimate a robust phylogenetic hypothesis for the genus. We show that the genus is not a monophyletic group. The subgenus Creaserinus does fall out as a monophyletic group, but distinct from the subgenus Fallicambarus. The subgenus Fallicambarus appears to be monophyletic with the exception of the species Procambarus (Tenuicambarus) tenuis, which falls in the midst of this subgenus suggesting that it might be better classified as a Fallicambarus species. We also show that the species Fallicambarus fodiens is a species complex with distinct evolutionary lineages that are regionalized to different geographic areas.  相似文献   

17.
Eryngium is the largest and arguably the most taxonomically complex genus in the family Apiaceae. Infrageneric relationships within Eryngium were inferred using sequence data from the chloroplast DNA trnQ-trnK 5'-exon and nuclear ribosomal DNA ITS regions to test previous hypotheses of subgeneric relationships, explain distribution patterns, reconstruct ancestral morphological features, and elucidate the evolutionary processes that gave rise to this speciose genus. In total, 157 accessions representing 118 species of Eryngium, 15 species of Sanicula (including the genus Hacquetia that was recently reduced to synonymy) and the monotypic Petagnaea were analyzed using maximum parsimony and Bayesian methods. Both separate and simultaneous analyses of plastid and nuclear data sets were carried out because of the prevalence of polyploids and hybrids within the genus. Eryngium is confirmed as monophyletic and is divided into two redefined subgenera: Eryngium subgenus Eryngium and E. subgenus Monocotyloidea. The first subgenus includes all examined species from the Old World (Africa, Europe, and Asia), except Eryngium tenue, E. viviparum, E. galioides, and E. corniculatum. Eryngium subgenus Monocotyloidea includes all examined species from the New World (North, Central and South America, and Australia; herein called the "New World sensu stricto" clade) plus the aforementioned Old World species that fall at the base of this clade. Most sectional and subgeneric divisions previously erected on the basis of morphology are not monophyletic. Within the "New World sensu stricto" group, six clades are well supported in analyses of plastid and combined plastid and nuclear data sets; the relationships among these clades, however, are unresolved. These clades are designated as "Mexican", "Eastern USA", "South American", "North American monocotyledonous", "South American monocotyledonous", and "Pacific". Members of each clade share similar geographical distributions and/or morphological or ecological traits. Evidence from branch lengths and low sequence divergence estimates suggests a rapid radiation at the base of each of these lineages. Conflict between chloroplast and nuclear data sets is weak, but the disagreements found are suggestive that hybrid speciation in Eryngium might have been a cause, but also a consequence, of the different rapid radiations observed. Dispersal-vicariance analysis indicates that Eryngium and its two subgenera originated from western Mediterranean ancestors and that the present-day distribution of the genus is explained by several dispersal events, including one trans-Atlantic dispersal. In general, these dispersals coincide with the polytomies observed, suggesting that they played key roles in the diversification of the genus. The evolution of Eryngium combines a history of long distance dispersals, rapid radiations, and hybridization, culminating in the taxonomic complexity observed today in the genus.  相似文献   

18.
The genus Uroleucon, and the related genus Macrosiphoniella, represent a large Tertiary radiation of aphids, with a total of about 300 species distributed throughout the world, primarily on host plant species in the family Asteraceae. A molecular phylogenetic study was conducted to identify major clades within Uroleucon and to address the cladistic validity of current subgeneric categories, the evolution of host plant associations, the age of origin, and intercontinental movements in this genus. The seventeen study species included members of the three major subgenera of Uroleucon, species from Europe and North America, one member of Macrosiphoniella, and two outgroups. Data consisted of DNA sequences for three mitochondrial regions and the nuclear gene EF1alpha, for a total of 4287 sites. Nodes supported strongly in both parsimony and maximum likelihood analyses suggest that: (1) Nearctic Uromelan are a monophyletic group branching near the base of the genus and not related to European Uromelan, (2) the New World subgenus Lambersius is possibly monophyletic but is not a tightly related group and is not closely related to other North American species, and (3) Nearctic members of subgenus Uroleucon are a closely related monophyletic group not allied with Nearctic Uromelan or Lambersius. Instead they represent a separate colonization by an Old World ancestor, as they are nested within a strongly supported clade containing European members of both subgenera Uroleucon and Uromelan. Neither of these subgenera is monophyletic. Molecular clock calculations, based on calibrations of mitochondrial divergences from other insects, suggest that Uroleucon + Macrosiphoniella is a relatively recent radiation, probably no more than 5–10 million years old. Although largely confined to Asteraceae, this clade did not radiate in parallel with its host plants. Rather, lateral movement between lineages of Asteraceae must have occurred repeatedly.  相似文献   

19.
The tribe Acacieae (Fabaceae: Mimosoideae) contains two genera, the monotypic African Faidherbia and the pantropical Acacia, which comprise about 1200 species with over 950 confined to Australia. As currently recognized, the genus Acacia is subdivided into three subgenera: subg. Acacia, subg. Aculeiferum, and the predominantly Australian subg. Phyllodineae. Morphological studies have suggested the tribe Acacieae and genus Acacia are artificial and have a close affinity to the tribe Ingeae. Based on available data there is no consensus on whether Acacia should be subdivided. Sequence analysis of the chloroplast trnK intron, including the matK coding region and flanking noncoding regions, indicate that neither the tribe Acacieae nor the genus Acacia are monophyletic. Two subgenera are monophyletic; section Filicinae of subgenus Aculeiferum does not group with taxa of the subgenus. Section Filicinae, eight Ingeae genera, and Faidherbia form a weakly supported paraphyletic grade with respect to subg. Phyllodineae. Acacia subg. Aculeiferum (s. s.) is sister to the grade. These data suggest that characters currently used to differentiate taxa at the tribal, generic, and subgeneric levels are polymorphic and homoplasious in cladistic analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号