首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vu DM  Myers JK  Oas TG  Dyer RB 《Biochemistry》2004,43(12):3582-3589
Fast relaxation kinetics studies of the B-domain of staphylococcal protein A were performed to characterize the folding and unfolding of this small three-helix bundle protein. The relaxation kinetics were initiated using a laser-induced temperature jump and probed using time-resolved infrared spectroscopy. The kinetics monitored within the amide I' absorbance of the polypeptide backbone exhibit two distinct kinetics phases with nanosecond and microsecond relaxation times. The fast kinetics relaxation time is close to the diffusion limits placed on protein folding reactions. The fast kinetics phase is dominated by the relaxation of the solvated helix (nu = 1632 cm(-1)), which reports on the fast relaxation of the individual helices. The slow kinetics phase follows the cooperative relaxation of the native helical bundle core that is monitored by both solvated (nu = 1632 cm(-1)) and buried helical IR bands (nu = 1652 cm(-1)). The folding rates of the slow kinetics phase calculated over an extended temperature range indicate that the core formation of this protein follows a pathway that is energetically downhill. The unfolding rates are much more strongly temperature-dependent indicating an activated process with a large energy barrier. These results provide significant insight into the primary process of protein folding and suggest that fast formation of helices can drive the folding of helical proteins.  相似文献   

2.
A nanosecond temperature jump (T-jump) apparatus was constructed and combined with time-resolved Raman measurements to investigate thermal unfolding of a protein for the first time. The 1.56-microm heat pulse with 9 ns width at 10 Hz was obtained through the two-step stimulated Raman scattering in D(2) gas involving seeding and amplification. To achieve uniform temperature rise, the counter-propagation geometry was adopted for the heat pulse. The temperature rise was determined by anti-Stokes to Stokes intensity ratios of the 317 and 897 cm(-1) bands of MoO(4)(2-) ions in an aqueous solution. The T-jump as large as 9 degrees C in 10 ns was attained. The unfolding of bovine pancreatic ribonuclease A was monitored with time-resolved Raman spectra excited at 532 nm. The C-S stretching band of Met residues exhibited 10% change of that expected from the stationary state temperature-difference spectra in the initial 200 ns following T-jump and another 10% in 5 ms. The Raman intensity of SO(4)(2-) ions around 980 cm(-1) increased at 100 micros, presumably due to some conformational changes of the protein around the active site. The S-S stretches and tyrosine doublet displayed little changes within 5 ms. Thus, the conformational changes in the initial step of unfolding are not always concerted.  相似文献   

3.
Severcan F  Haris PI 《Biopolymers》2003,69(4):440-447
Pig citrate synthase (PCS) can be used as a model enzyme to gain some insight into the structural basis of protein thermostability. The thermal unfolding characteristics of the specific secondary structure elements within PCS were monitored in detail by following changes in its amide I band components. The result of our study indicates that PCS undergoes irreversible thermal denaturation. Detailed analysis reveals that the different secondary structures display a multistep transition with a major and a minor transition at different temperatures and a very small initial transition at the same temperature (30 degrees C). A plot of temperature-induced changes in (1)H-(2)H exchange, the decrease in the absorbance of the alpha-helical structures, and the increase in the absorbance of aggregated structures all have in common a multistep transition, the minor one centered at 45 degrees C and the major one around 59 degrees C. In contrast, a band that is tentatively assigned to loop structures displays these same minor and major transitions but at lower temperatures (39 and 52 degrees C, respectively). The transition, which occurs at 39-45 degrees C, is not associated with the appearance of aggregated structures. This transition may reflect a change in the tertiary structure of the protein. However, the final transition, which occurs at a higher temperature (52-59 degrees C), reflects unfolding and aggregation of the polypeptide chains. The Fourier transform infrared (FTIR) analysis suggests that PCS has a thermolabile region that unfolds first, some 7 degrees C below the main unfolding of the protein. We propose that this reflects the unfolding of the highly flexible loop segments, which in turn triggers the unfolding of the predominantly helical core structure of PCS.  相似文献   

4.
Infrared spectroscopy (IR) and differential scanning calorimetry (DSC) were used to study the biophysical properties of the PKCepsilon-C2 domain, a C2 domain that possess special characteristics as it binds to acidic phospholipids in a Ca2+-independent manner and no structural information about it is available to date. When the secondary structure was determined by IR spectroscopy in H2O and D2O buffers, beta sheet was seen to be the major structural component. Spectroscopic studies of the thermal denaturation in D2O showed a broadening in the amide I' band starting at 45 degrees C. Curve fitting analysis of the spectra demonstrated that two components appear upon thermal denaturation, one at 1623 cm(-1) which was assigned to aggregation and a second one at 1645 cm(-1), which was assigned to unordered or open loop structures. A lipid binding assay has demonstrated that PKCepsilon-C2 domain has preferential affinity for PIP2 although it exhibits maximal binding activity for phosphatidic acid when 100 mol% of this negatively charged phospholipid was used. Thus, phosphatidic acid containing vesicles were used to characterize the effect of lipid binding on the secondary structure and thermal stability. These experiments showed that the secondary structure did not change upon lipid binding and the thermal stability was very high with no significant changes occurring in the secondary structure after heating. DSC experiments demonstrated that when the C2-protein was scanned alone, it showed a Tm of 49 degrees C and a calorimetric denaturation enthalpy of 144.318 kJ x mol(-1). However, when phoshatidic acid vesicles were included in the mixture, the transition disappeared and further IR experiments demonstrated that the protein structure was not modified under these conditions.  相似文献   

5.
Isotope-edited infrared spectroscopy has the ability to probe the segmental properties of long biopolymers. In this work, we have compared the infrared spectra of a model helical peptide ((12)C) Ac-W-(E-A-A-A-R)(6)-A-NH(2), described originally by Merutka et al. (Biochemistry 1991;30:4245-4248) and three derivatives that are (13)C labeled at the backbone carbonyl of alanines. The locations of six isotopically labeled alanines are at the N-terminal, C-terminal, and the middle two repeating units of the peptide. Variation in temperature from 1 degrees to 91 degrees C transformed the peptides from predominantly helical to predominantly disordered state. Amplitude and position of the infrared amide I' absorption bands from (12)C- and (13)C-labeled segments provided information about the helical content. Temperature dependence of infrared spectra was used to estimate segmental stability. As a control measure of overall peptide stability and helicity (independent of labeling), the temperature dependence of circular dichroism spectra in the far-UV range at identical conditions (temperature and solvent) as infrared spectra was measured. The results indicate that the central quarter of the 32 amino acids helix has the maximal helicity and stability. The midpoint of the melting curve of the central quarter of the helix is 5.4 +/- 0.8 degrees C higher than that of the termini. The N-terminal third of the helix is more helical and is 2.0 +/- 1.4 degrees C more stable than the C-terminus.  相似文献   

6.
This research was undertaken to distinguish between local and global unfolding in the reversible thermal denaturation of bovine pancreatic ribonclease A (RNase A). Local unfolding was monitored by steady-state and time-resolved fluorescence of nine mutants in each of which a single tryptophan was substituted for a wild-type residue. Global unfolding was monitored by far-UV circular dichroism and UV absorbance. All the mutants (except F8W and D38W) exhibited high specific enzymatic activity, and their far-UV CD spectra were very close to that of wild-type RNase A, indicating that the tryptophan substitutions did not affect the structure of any of the mutants (excluding K1W and Y92W) under folding conditions at 20 degrees C. Like wild-type RNase A, the various mutants exhibited reversible cooperative thermal unfolding transitions at pH 5, with transition temperatures 2.5-11 degrees C lower than that of the wild-type transition, as detected by far-UV CD or UV absorbance. Even at 80 degrees C, well above the cooperative transition of all the RNase A mutants, a considerable amount of secondary and tertiary structure was maintained. These studies suggest the following two-stage mechanism for the thermal unfolding transition of RNase A as the temperature is increased. First, at temperatures lower than those of the main cooperative transition, long-range interactions within the major hydrophobic core are weakened, e.g., those involving residues Phe-8 (in the N-terminal helix) and Lys-104 and Tyr-115 (in the C-terminal beta-hairpin motif). The structure of the chain-reversal loop (residues 91-95) relaxes in the same temperature range. Second, the subsequent higher-temperature cooperative unfolding transition is associated with a loss of secondary structure and additional changes in the tertiary contacts of the major hydrophobic core, e.g., those involving residues Tyr-73, Tyr-76, and Asp-38 on the other side of the molecule. The hydrophobic interactions of the C-terminal loop of the protein are enhanced by high temperature, and perhaps are responsible for the preservation of the local structural environment of Trp-124 at temperatures slightly above the major cooperative transition. The results shed new light on the thermal unfolding transitions, generally supporting the thermal unfolding hypothesis of Burgess and Scheraga, as modified by Matheson and Scheraga.  相似文献   

7.
Solvation and desolvation dynamics around helices during the kinetic folding process of apomyoglobin (apoMb) were investigated by using time-resolved infrared (IR) spectroscopy based on continuous-flow rapid mixing devices and an IR microscope. The folding of apoMb can be described by the collapse and search mechanism, in which the initial collapse occurring within several hundreds of microseconds is followed by the search for the correct secondary and tertiary structures. The time-resolved IR measurements showed a significant increase in solvated helix possessing a component of amide I' at 1633 cm(-1) within 100 mus after initiating the folding by a pD jump from pD2.2 to 6.0. In contrast, there was a minor increase in buried helices having amide I' at 1652 cm(-1) in this time domain. The observations demonstrate that the initially collapsed conformation of apoMb possesses a large amount of solvated helices, and suggest that much water is retained inside the collapsed domain. The contents of solvated and buried helices decrease and increase, respectively, in the time domain after the collapse, showing that the stepwise desolvation around helices is associated with the conformational search process. Interestingly, the largest changes in solvated and buried helices were observed at the final rate-limiting step of the apoMb folding. The persistence of the solvated helix until the final stage of apoMb folding suggests that the dissociation of hydrogen bonds between water and main-chain amides contributes to the energy barrier in the rate-determining step of the folding.  相似文献   

8.
Huang CY  Balakrishnan G  Spiro TG 《Biochemistry》2005,44(48):15734-15742
Early events in the unfolding of apomyoglobin are studied with time-resolved ultraviolet resonance Raman (UVRR) spectroscopy coupled to a laser-induced temperature jump (T-jump). The UVRR spectra provide simultaneous probes of the aromatic side-chain environment and the amide backbone conformation. The amide bands reveal helix melting, with relaxation times of 70 and 16 micros at pH 5.5 and 4, respectively, in reasonable agreement with previously reported amide I' FTIR/T-jump relaxations (132 and 14 micros at pD 5.5 and 3). The acceleration at pH 4 is consistent with destabilization of the hydrophobic AGH core of the protein via protonation of a pair of buried histidines. The same relaxation times are found for intensity loss by the phenylalanine F12 band, signaling solvent exposure of the phenyl rings. There are seven Phe residues, distributed throughout the protein; they produce a global response, parallel to helix melting. Relaxation of the tryptophan W16 intensity also parallels helix melting at pH 5.5 but is twice as fast, 7 micros, at pH 4. The pH 5.5 signal arises from Trp 7, which is partially solvent-exposed, while the pH 4 signal arises from the buried Trp 14. Thus, Trp 14 is exposed to the solvent prior to helix melting of the AGH core, suggesting initial displacement of the A helix, upon which Trp 14 resides. All of the UVRR signals show a prompt response, within the instrument resolution (approximately 60 ns), which accounts for half of the total relaxation amplitude. This response is attributed to solvent penetration into the protein, possibly convoluted with melting of hydrated helix segments.  相似文献   

9.
A temperature-jump (T-jump) time-resolved X-ray crystallographic technique using the Laue method was developed to detect small, localized structural changes of proteins in crystals exposed to a temperature increase induced by laser irradiation. In a chimeric protein between thermophilic and mesophilic 3-isopropylmalate dehydrogenases (2T2M6T), the initial structural change upon T-jump to a denaturing temperature (approximately 90 degrees C) was found to be localized at a region which includes a beta-turn and a loop located between the two domains of the enzyme. A mutant, 2T2M6T-E110P/S111G/S113E, having amino acid replacements in this beta-turn region with the corresponding residues of the thermophilic enzyme, showed greater stability than the original chimera (increase of T:(m) by approximately 10 degrees C) and no T-jump-induced structural change in this region was detected by our method. These results indicate that thermal unfolding of the original chimeric enzyme, 2T2M6T, is triggered in this beta-turn region.  相似文献   

10.
Maeda Y  Fujihara M  Ikeda I 《Biopolymers》2002,67(2):107-112
The structure of horseradish peroxidase (HRP) in phosphate buffered saline (PBS)/dimethyl sulfoxide (DMSO) mixed solvents at different compositions is investigated by IR, electronic absorption, and fluorescence spectroscopies. The fluorescence spectra and the amide I spectra of ferric HRP [HRP(Fe3+)] show that overall structural changes are relatively small up to 60% DMSO. Although the amide I band of HRP(Fe3+) shows a gradual change in the secondary structure and a decrease in the contents of a helices, its fluorescence spectra indicate that the distance between the heme and Trp173 is almost constant. In contrast, the changes in the positions of the Soret bands for resting HRP(Fe3+) and catalytic intermediates (compounds I and II) and the IR spectra at the C-O stretching vibration mode of carbonyl ferrous HRP [HRP(Fe2+)-CO] show that the microenvironment in the distal heme pocket is altered, even with low DMSO contents. The large reduction of the catalytic activity of HRP even at low DMSO contents can be attributed to the structural transition in the distal heme pocket. In PBS/DMSO mixtures containing more than 70 vol % DMSO, HRP undergoes large structural changes, including a large loss of the secondary structure and a dissociation of the heme from the apoprotein. The presence of the components of the amide I band that can be assigned to strongly hydrogen bonding amide C=O groups at 1616 and 1684 cm(-1) suggests that the denatured HRP may aggregate through strong hydrogen bonds.  相似文献   

11.
Decatur SM 《Biopolymers》2000,54(3):180-185
The effect of N-acetylation on the conformation of alanine-rich helical peptides is examined using isotope-edited Fourier transform infrared (FTIR) spectroscopy. A series of peptides with sequence AA(AAKAA)(3)AAY has been prepared; each peptide incorporates four (13)C-labeled alanines. These peptides have two amide I' bands in their FTIR spectra: one corresponding to the (12)C amino acids, and one assigned to the (13)C amino acids. The intensity and frequency of the (13)C amide I' band varies systematically with the position of the labels in the sequence and the presence or absence of an N-acetyl capping group. The intensity of the (13)C amide I' band correlates with helix stability at the labeled residues as predicted by thermodynamic models of the helix-coil transition. These results suggest that FTIR spectroscopy combined with specific isotope labeling can be used to dissect the conformation of helical peptides at the residue level.  相似文献   

12.
Meilleur F  Contzen J  Myles DA  Jung C 《Biochemistry》2004,43(27):8744-8753
Perdeuterated and hydrogenated cytochrome P450cam (P450cam), from Pseudomonas putida, has been characterized concerning thermal stability and structural dynamics. For the first time, Fourier transform infrared (FTIR) spectroscopy was used to characterize a perdeuterated protein. The secondary structure compositions were determined from the fitted amide I' spectral region, giving band populations at 10 degrees C for the perdeuterated protein of 22% between 1605 and 1624 cm(-1) (beta-sheets), 47% between 1633 and 1650 cm(-1) (alpha-helix (29%) plus unordered/3(10)-helix (18%)), and 28% between 1657 and 1677 cm(-1) (turns) and for the hydrogenated protein of 22% between 1610 and 1635 cm(-1) (beta-sheets), 52% between 1640 and 1658 cm(-1) (alpha-helix (41%) plus unordered/3(10)-helix (11%)), and 24% between 1665 and 1680 cm(-1) (turns).Thermal unfolding experiments revealed that perdeuterated P450cam was less stable than the hydrogenated protein. The midpoint transition temperatures were 60.8 and 64.4 degrees C for the perdeuterated and hydrogenated P450cam, respectively. Step-scan time-resolved FTIR was applied to the P450cam-CO complex to study the ligand-rebinding process after flash photolysis. Rebinding of the ligand occurred with the same kinetics and rate constants k(on), 8.9 x 10(4) and 8.3 x 10(4) M(-1) s(-1) for the perdeuterated and hydrogenated P450cam, respectively.Perdeuterated P450cam was expressed for a neutron crystallographic study to determine the specific hydration states and hydrogen-bonding networks at the active site. The analyses presented here show that perdeuterated P450cam is structurally similar to its hydrogenated counterpart, despite its reduced thermal stability, suggesting that information obtained from the neutron structure will be representative of the normal hydrogenated P450cam.  相似文献   

13.
In this study we present the electrochemically induced Fourier transform infrared (FTIR) difference spectra of the Cu(A) center derived from the ba(3)-type cytochrome c oxidase of Thermus thermophilus in the spectral range from 1800 to 500 cm(-1). The mid infrared is dominated by the nu(C[double bond]O) vibrations of the amide I modes at 1688, 1660, and 1635 cm(-1), reflecting the redox-induced perturbation of the predominantly beta-sheet type structure. The corresponding amide II signal is found at 1528 cm(-1). In the lower frequency range below 800 cm(-1), modes from amino acids liganding the Cu(A) center are expected. On the basis of the absorbance spectrum of the isolated amino acids, methionine is identified as an important residue, displaying C-S vibrations at these frequencies. This spectral range was previously disregarded by protein IR spectroscopists, mainly due to the strong absorbance of the solvent, H(2)O. With an optimized setup, however, IR is found suitable for structure/function studies on proteins.  相似文献   

14.
The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent.  相似文献   

15.
Pyrococcus furiosus is a marine hyperthermophile that grows optimally at 100 degrees C. Glutamate dehydrogenase (GDH) from P. furiosus is a hexamer of identical subunits and has an M(r) = 270,000 +/- 5500 at 25 degrees C. Electron micrographs showed that the subunit arrangement is similar to that of GDH from bovine liver (i.e. 3/2 symmetry in the form of a triangular antiprism). However, GDH from P. furiosus is inactive at temperatures below 40 degrees C and undergoes heat activation above 40 degrees C. Both NAD+ and NADP+ are utilized as cofactors. Apparently the inactive enzyme also binds cofactors, since the enzyme maintains the ability to bind to an affinity column (Cibacron blue F3GA) and is specifically eluted with NADP+. Conformational changes that accompany activation and thermal denaturation were detected by precision differential scanning microcalorimetry. Thermal denaturation starts at 110 degrees C and is completed at 118 degrees C. delta(cal) = 414 Kcal [mol GDH]-1. Tm = 113 degrees C. This increase in heat capacity indicates an extensive irreversible unfolding of the secondary structure as evidenced also by a sharp increase in absorbance at 280 nm and inactivation of the enzyme. The process of heat activation of GDH from 40 to 80 degrees C is accompanied by a much smaller increase in absorbance at 280 nm and a reversible increase in heat capacity with delta(cal) = 187 Kcal [mol GDH]-1 and Tm = 57 degrees C. This absorbance change as well as the moderate increase in heat capacity suggest that thermal activation leads to some exposure of hydrophobic groups to solvent water as the GDH structure is opened slightly. The increase in absorbance at 280 nm during activation is only 12% of that for denaturation. Overall, GDH appears to be well adapted to correspond with the growth response of P. furiosus to temperature.  相似文献   

16.
M C Chen  R C Lord 《Biochemistry》1976,15(9):1889-1897
The reversible thermal denaturation of bovine pancreatic ribonuclease A at pH 5 in 0.1 M NaCl over the range 32-70 degrees C as studied by Raman spectroscopy proceeds in a gradual manner consistent with a stepwise unfolding process rather than as a transition between two states. Conversion of residues from helical or pleated-sheet geometry to some intermediate geometry, as followed by means of the amide I and III lines, reveals that substantial amounts of the helical and pleated-sheet conformations remain at 70 degrees C. Changes in the strength of hydrogen bonding by the tyrosyl residues are indicated by the intensity ratio of the doublet at 830-850 cm(-1) and changes in the geometry of the disulfide bridges by the frequency and half-width of the Raman line near 510 cm(-1) due to the S-S vibration. Vibrations of C-S bonds in the methionines and cystines are used to monitor conformational changes in these residues. While there are small quantitative differences in temperature dependence among these probes, all agree in placing the malting temperature at or near 62 degrees C. The Raman data are quantitatively consistent with the six-stage scheme of unfolding of A.W. Burgess and H.A. Scheraga [(1975), J. Theor, Biol. 53, 403], except that no change in the environment of the tyrosines is seen until 45 degrees C.  相似文献   

17.
Yan YB  Wang Q  He HW  Hu XY  Zhang RQ  Zhou HM 《Biophysical journal》2003,85(3):1959-1967
Unfolding and aggregation are basic problems in protein science with serious biotechnological and medical implications. Probing the sequential events occurring during the unfolding and aggregation process and the relationship between unfolding and aggregation is of particular interest. In this study, two-dimensional infrared (2D IR) correlation spectroscopy was used to study the sequential events and starting temperature dependence of Myoglobin (Mb) thermal transitions. Though a two-state model could be obtained from traditional 1D IR spectra, subtle noncooperative conformational changes were observed at low temperatures. Formation of aggregation was observed at a temperature (50-58 degrees C) that protein was dominated by native structures and accompanied with unfolding of native helical structures when a traditional thermal denaturation condition was used. The time course NMR study of Mb incubated at 55 degrees C for 45 h confirmed that an irreversible aggregation process existed. Aggregation was also observed before fully unfolding of the Mb native structure when a relative high starting temperature was used. These findings demonstrated that 2D IR correlation spectroscopy is a powerful tool to study protein aggregation and the protein aggregation process observed depends on the different environmental conditions used.  相似文献   

18.
The IR absorption frequencies as derived from second derivatives of the Fourier transform IR spectra of the amide I' bands of globular proteins in D2O are compared to those obtained from band fitting of the vibrational circular dichroism (VCD) spectra. The two sets of frequencies are in very good agreement, yielding consistent ranges where amide I' VCD and IR features occur. Use of VCD to complement the IR allows one to add sign information to the frequency information so that features occurring in the overlapping frequency ranges that might arise from different secondary structures can be better discriminated. From this comparison, it is clear that correlation just of the frequency of a given IR transition to secondary structure can lead to a nonunique solution. Different sign patterns were identified for correlated groups of globular proteins in restricted frequency ranges that have been previously assigned to defined secondary structural elements. Hence, different secondary structural elements must contribute band components to a given frequency range.  相似文献   

19.
To structurally characterize the nonaggregated state of the amyloid beta peptide, which assembles into the hallmark fibrils of Alzheimer disease, we investigated the conformation of the N-terminal extracellular peptide fragment Abeta(1-28) in D(2)O at acidic pD by utilizing combined FTIR and isotropic and anisotropic Raman spectra measured between 1550 and 1750 cm(-1). Peptide aggregation is avoided under the conditions chosen. The amide I' band was found to exhibit a significant noncoincidence effect in that the first moment of the anisotropic Raman and of the IR band profile appears red-shifted from that of the isotropic Raman scattering. A simulation based on a coupled oscillator model involving all 27 amide I' modes of the peptide reveals that the peptide adopts a predominantly polyproline II conformation. Our results are inconsistent with the notion that the monomeric form of Abeta(1-28) is a totally disordered, random-coil structure. Generally, they underscore the notion that polyproline II is a characteristic motif of the unfolded state of proteins and peptides.  相似文献   

20.
Two-dimensional 1H NMR spectroscopy over a range of temperature through thermal unfolding has been applied to the low-spin, ferric cyanide complex of myoglobin from Aplysia limacina to search for intermediates in the unfolding and to characterize the effect of temperature on the magnetic properties and electronic structure of the heme iron. The observation of strictly linear behavior from 5 to 80 C degrees through the unfolding transition for all hyperfine-shifted resonances indicates the absence of significant populations of intermediate states to the cooperative unfolding with Tm approximately 80 degrees C. The magnetic anisotropies and orientation of the magnetic axes for the complete range of temperatures were also determined for the complex. The anisotropies have very similar magnitudes, and exhibit the expected characteristic temperature dependence, previously observed in the isoelectronic sperm whale myoglobin complex. In contrast to sperm whale Mb, where the orientation of the magnetic axis was completely temperature-independent, the tilt of the major magnetic axis, which correlates with the Fe-CN tilt, decreases at high temperature in Aplysia limacina Mb, indicating a molecular structure that is conserved with temperature, although more plastic than that of sperm whale Mb. The pattern of contact shifts reflects a conserved Fe-His(F8) bond and pi-spin delocalization into the heme, as expected for the orientation of the axial His imidazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号