首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
By studying the loci that contribute to human longevity, we aim to identify mechanisms that contribute to healthy aging. To identify such loci, we performed a genome-wide association study (GWAS) comparing 403 unrelated nonagenarians from long-living families included in the Leiden Longevity Study (LLS) and 1670 younger population controls. The strongest candidate SNPs from this GWAS have been analyzed in a meta-analysis of nonagenarian cases from the Rotterdam Study, Leiden 85-plus study, and Danish 1905 cohort. Only one of the 62 prioritized SNPs from the GWAS analysis (P<1×10(-4) ) showed genome-wide significance with survival into old age in the meta-analysis of 4149 nonagenarian cases and 7582 younger controls [OR=0.71 (95% CI 0.65-0.77), P=3.39 × 10(-17) ]. This SNP, rs2075650, is located in TOMM40 at chromosome 19q13.32 close to the apolipoprotein E (APOE) gene. Although there was only moderate linkage disequilibrium between rs2075650 and the ApoE ε4 defining SNP rs429358, we could not find an APOE-independent effect of rs2075650 on longevity, either in cross-sectional or in longitudinal analyses. As expected, rs429358 associated with metabolic phenotypes in the offspring of the nonagenarian cases from the LLS and their partners. In addition, we observed a novel association between this locus and serum levels of IGF-1 in women (P=0.005). In conclusion, the major locus determining familial longevity up to high age as detected by GWAS was marked by rs2075650, which tags the deleterious effects of the ApoE ε4 allele. No other major longevity locus was found.  相似文献   

2.
MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community‐based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed‐effects regression modeling of grip strength (kg) versus continuous miRNA ‘Cq’ values and versus binary miRNA expression was performed. We conducted an integrative miRNA–mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA–grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR‐20a‐5p (FDR q 1.8 × 10?6) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR‐126‐3p, miR‐30a‐5p, and miR‐30d‐5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin‐mediated proteolysis. Our comprehensive assessment in a community‐based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength.  相似文献   

3.
Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long‐lived individuals (LLI) and 8919 younger controls. First, we performed a large‐scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune‐associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip‐wide significant signal (PImmunochip = 7.01 × 10–9) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PImmunochip < 5 × 10–4 for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta‐analysis of the combined French and Danish data after adjusting for multiple testing. In a meta‐analysis of all three samples, rs2706372 reached a P‐value of PImmunochip+Repl = 5.42 × 10?7 (OR = 1.20; 95% CI = 1.12–1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life.  相似文献   

4.
Solar lentigines are a common feature of sun‐induced skin ageing. Little is known, however, about the genetic factors contributing to their development. In this genome‐wide association study, we aimed to identify genetic loci associated with solar lentigines on the face in 502 middle‐aged French women. Nine SNPs, gathered in two independent blocks on chromosome 6, exhibited a false discovery rate below 25% when looking for associations with the facial lentigine score. The first block, in the 6p22 region, corresponded to intergenic SNPs and also exhibited a significant association with forehead lentigines (P = 1.37 × 10?8). The second block, within the 6p21 HLA region, was associated with decreased HLA‐C expression according to several eQTL databases. Interestingly, these SNPs were also in high linkage disequilibrium with the HLA‐C*0701 allele (r2 = 0.95). We replicated an association recently found by GWAS in the IRF4 gene. Finally, a complementary study on 44 selected candidate SNPs revealed novel associations in the MITF gene. Overall, our results point to several mechanisms involved in the severity of facial lentigines, including HLA/immunity and the melanogenesis pathway.  相似文献   

5.
Previous studies have demonstrated that low density lipoprotein cholesterol (LDL-C) concentration is influenced by both genes and environment. Although rare genetic variants associated with Mendelian causes of increased LDL-C are known, only one common genetic variant has been identified, the apolipoprotein E gene (APOE). In an attempt to localize quantitative trait loci (QTLs) influencing LDL-C, we conducted a genome-wide linkage scan of LDL-C in participants of the Strong Heart Family Study (SHFS). Nine hundred eighty men and women, age 18 years or older, in 32 extended families at three centers (in Arizona, Oklahoma, and North and South Dakota) were phenotyped for LDL-C concentration and other risk factors. Using a variance component approach and the program SOLAR, and after accounting for the effects of covariates, we detected a QTL influencing LDL-C on chromosome 19, nearest marker D19S888 at 19q13.41 [logarithm of odds (LOD) = 4.3] in the sample from the Dakotas. This region on chromosome 19 includes many possible candidate genes, including the APOE/C1/C4/C2 gene cluster. In follow-up association analyses, no significant evidence for an association was detected with the APOE*2 and APOE*4 alleles (P = 0.76 and P = 0.53, respectively). Suggestive evidence of linkage to LDL-C was detected on chromosomes 3q, 4q, 7p, 9q, 10p, 14q, and 17q. These linkage signals overlap positive findings for lipid-related traits and harbor plausible candidate genes for LDL-C.  相似文献   

6.
Objective: The objective was to provide an overall assessment of genetic linkage data of BMI and BMI‐defined obesity using a nonparametric genome scan meta‐analysis. Research Methods and Procedures: We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome‐wide logarithm of the odds (LOD) scores, non‐parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI‐defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Results: Bins at chromosome 13q13.2‐ q33.1, 12q23‐q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3‐22.3 were also observed for BMI‐defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1‐qter and 12p11.21‐q23 (p < 0.01). Conclusion: Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.  相似文献   

7.
Equine osteochondrosis is a developmental joint disease that is a significant source of morbidity affecting multiple breeds of horse. The genetic variants underlying osteochondrosis susceptibility have not been established. Here, we describe the results of a genome‐wide association study of osteochondrosis using 90 cases and 111 controls from a population of Dutch Warmblood horses. We report putative associations between osteochondrosis and loci on chromosome 3 (BIEC2‐808543; = 5.03 × 10?7) and chromosome 10 (BIEC2‐121323; = 2.62 × 10?7).  相似文献   

8.
Identifying novel melanoma genetic risk factors informs screening and prevention efforts. Mutations in the phenylalanine hydroxylase gene (the causative gene in phenylketonuria) lead to reduced pigmentation in untreated phenylketonuria patients, and reduced pigmentation is associated with greater melanoma risk. Therefore, we sought to characterize the relationship between phenylketonuria carrier status and melanoma risk. Using National Newborn Screening Reports, we determined the United States phenylketonuria/hyperphenylalanemia carrier frequency in Caucasians to be 1.76%. We examined three publically available melanoma datasets for germline mutations in the phenylalanine hydroxylase gene associated with classic phenylketonuria and/or hyperphenylalanemia. Mutations were identified in 29/814 melanoma patients, with a carrier frequency of 3.56%. There was a twofold enrichment (p ‐value = 3.4 × 10?5) compared to the Caucasian frequency of hyperphenylalanemia/phenylketonuria carriers. These data demonstrate a novel association between phenylalanine hydroxylase carrier status and melanoma risk. Further, functional investigation is warranted to determine the link between phenylalanine hydroxylase mutations and melanomagenesis.  相似文献   

9.
Twelve microsatellite loci of Leishmania braziliensis were examined, nine of which were developed in this work. Fifty‐six Leishmania braziliensis were genotyped with these microsatellite loci. The 12 loci studied were polymorphic with the number of alleles ranging from five to 19, with a mean of 9.7 ± 4.1 and the observed heterozygosity averaging 0.425 ± 0.202. The important heterozygote deficits we observed (FIS = 0.41, P value = 0.004) appear incompatible with the heterozygote excess expected in clonal diploids. This last result could revive the clonality/sexuality debate regarding Leishmania. This work validates the potential use of these microsatellites for population genetics analysis.  相似文献   

10.
Reduced growth hormone (GH) signaling has been consistently associated with increased health and lifespan in various mouse models. Here, we assessed GH secretion and its control in relation with human familial longevity. We frequently sampled blood over 24 h in 19 middle‐aged offspring of long‐living families from the Leiden Longevity Study together with 18 of their partners as controls. Circulating GH concentrations were measured every 10 min and insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 3 (IGFBP3) every 4 h. Using deconvolution analysis, we found that 24‐h total GH secretion was 28% lower (P = 0.04) in offspring [172 (128–216) mU L?1] compared with controls [238 (193–284) mU L?1]. We used approximate entropy (ApEn) to quantify the strength of feedback/feedforward control of GH secretion. ApEn was lower (P = 0.001) in offspring [0.45 (0.39–0.53)] compared with controls [0.66 (0.56–0.77)], indicating tighter control of GH secretion. No significant differences were observed in circulating levels of IGF‐1 and IGFBP3 between offspring and controls. In conclusion, GH secretion in human familial longevity is characterized by diminished secretion rate and more tight control. These data imply that the highly conserved GH signaling pathway, which has been linked to longevity in animal models, is also associated with human longevity.  相似文献   

11.
To find sequence variants affecting prostate cancer (PCA) susceptibility in an unscreened Romanian population we use a genome‐wide association study (GWAS). The study population included 990 unrelated pathologically confirmed PCA cases and 1034 male controls. DNA was genotyped using Illumina SNP arrays, and 24.295.558 variants were imputed using the 1000 Genomes data set. An association test was performed between the imputed markers and PCA. A systematic literature review for variants associated with PCA risk identified 115 unique variants that were tested in the Romanian sample set. Thirty of the previously reported SNPs replicated (P‐value < 0.05), with the strongest associations observed at: 8q24.21, 11q13.3, 6q25.3, 5p15.33, 22q13.2, 17q12 and 3q13.2. The replicated variants showing the most significant association in Romania are rs1016343 at 8q24.21 (P = 2.2 × 10?4), rs7929962 at 11q13.3 (P = 2.7 × 10?4) and rs9364554 at 6q25.2 (P = 4.7 × 10?4). None of the variants tested in the Romanian GWAS reached genome‐wide significance (P‐value <5 × 10?8) but 807 markers had P‐values <1 × 10?4. Here, we report the results of the first GWAS of PCA performed in a Romanian population. Our study provides evidence that a substantial fraction of previously validated PCA variants associate with risk in this unscreened Romanian population.  相似文献   

12.
Summary Anonymous DNA probes mapping to human chromosome 16 and the distal region of the human X chromosome were isolated from a genomic library constructed using lambda EMBL3 and DNA from a mouse/human hybrid. The hybrid cell contained a der(16)t(X;16)(q26;q24) as the only human chromosome. Fifty clones were isolated using total human DNA as a hybridisation probe. Forty six clones contained single copy DNA in addition to the repetitive DNA. Pre-reassociation with sonicated human DNA was used to map these clones by a combination of Southern blot analysis of a hybrid cell panel containing fragments of chromosomes 16 and X and in situ hybridisation. One clone mapped to 16pter 16p13.11, one clone to 16p13.316p13.11, four clones to 16p13.316p13.13, two clones to 16p13.1316p13.11, one clone to 16p13.11, seven clones to 16p13.1116q12 or 16q13, four clones to 16q12 or 16q13, three clones to 16q1316q22.1, four clones to 16q22.10516q24, and nineteen clones to Xq26Xqter. Two clones mapping to 16p13 detected RFLPs. VK5 (D16S94) detected an MspI RFLP, PIC 0.37. VK20 (D16S96) detected a TaqI RFLP, PIC 0.37 and two MspI RFLPs, PIC 0.30 and 0.50. The adult polycystic kidney disease locus (PKD1) has also been assigned to 16p13. The RFLPs described will be of use for genetic counselling and in the isolation of the PKD1 gene. Similarly, the X clones may be used to isolate RFLPs for genetic counselling and the isolation of genes for the many diseases that map to Xq26qter.  相似文献   

13.
Cystic fibrosis (CF) is a monogenic disease due to mutations in the CFTR gene. Yet, variability in CF disease presentation is presumed to be affected by modifier genes, such as those recently demonstrated for the pulmonary aspect. Here, we conduct a modifier gene study for meconium ileus (MI), an intestinal obstruction that occurs in 16–20% of CF newborns, providing linkage and association results from large family and case–control samples. Linkage analysis of modifier traits is different than linkage analysis of primary traits on which a sample was ascertained. Here, we articulate a source of confounding unique to modifier gene studies and provide an example of how one might overcome the confounding in the context of linkage studies. Our linkage analysis provided evidence of a MI locus on chromosome 12p13.3, which was segregating in up to 80% of MI families with at least one affected offspring (HLOD = 2.9). Fine mapping of the 12p13.3 region in a large case–control sample of pancreatic insufficient Canadian CF patients with and without MI pointed to the involvement of ADIPOR2 in MI (p = 0.002). This marker was substantially out of Hardy–Weinberg equilibrium in the cases only, and provided evidence of a cohort effect. The association with rs9300298 in the ADIPOR2 gene at the 12p13.3 locus was replicated in an independent sample of CF families. A protective locus, using the phenotype of no-MI, mapped to 4q13.3 (HLOD = 3.19), with substantial heterogeneity. A candidate gene in the region, SLC4A4, provided preliminary evidence of association (p = 0.002), warranting further follow-up studies. Our linkage approach was used to direct our fine-mapping studies, which uncovered two potential modifier genes worthy of follow-up.  相似文献   

14.
BackgroundThere is variability in clinical outcome for patients with apparently the same stage colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) mapping to chromosomes 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and Xp22 have robustly been shown to be associated with the risk of developing CRC. Since germline variation can also influence patient outcome the relationship between these SNPs and patient survivorship from CRC was examined.MethodsAll enrolled into the National Study of Colorectal Cancer Genetics (NSCCG) were genotyped for 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and xp22 SNPs. Linking this information to the National Cancer Data Repository allowed patient genotype to be related to survival.ResultsThe linked dataset consisted of 4,327 individuals. 14q22.22 genotype defined by the SNP rs4444235 showed a significant association with overall survival. Specifically, the C allele was associated with poorer observed survival (per allele hazard ratio 1.13, 95% confidence interval 1.05–1.22, P = 0.0015).ConclusionThe CRC susceptibility SNP rs4444235 also appears to exert an influence in modulating patient survival and warrants further evaluation as a potential prognostic marker.  相似文献   

15.
Glucose metabolism marks health and disease and is causally inferred in the aging process. Ambulant continuous glucose monitoring provides 24‐h glucose rhythms under daily life conditions. We aimed to describe ambulant 24‐h glucose rhythms measured under daily life condition in relation to calendar and biological age in apparently healthy individuals. In the general population and families with propensity for longevity, we studied parameters from 24‐h glucose rhythms; glucose levels; and its variability, obtained by continuous glucose monitoring. Participants were 21 young (aged 22–37 years), 37 middle‐aged (aged 44–72 years) individuals from the general population, and 26 middle‐aged (aged 52–74 years) individuals with propensity for longevity. All were free of diabetes. Compared with young individuals, middle‐aged individuals from the general population had higher mean glucose levels (5.3 vs. 4.7 mmol L?1, P < 0.001), both diurnally (P < 0.001) and nocturnally (P = 0.002). Glucose variability was higher in the middle‐aged compared with the young (standard deviation 0.70 vs. 0.57 mmol L?1, P = 0.025). Compared with middle‐aged individuals from the general population, middle‐aged individuals with propensity for longevity had lower overall mean glucose levels (5.2 vs. 5.4 mmol L?1, P = 0.047), which were more different nocturnally (4.8 vs. 5.2 mmol L?1, P = 0.003) than diurnally (5.3 vs. 5.5 mmol L?1, P = 0.14). There were no differences in glucose variability between these groups. Results were independent of body mass index. Among individuals without diabetes, we observed significantly different 24‐h glucose rhythms depending on calendar and biological age.  相似文献   

16.
17.
Adiponectin has a variety of metabolic effects on obesity, insulin sensitivity, and atherosclerosis. To identify genes influencing variation in plasma adiponectin levels, we performed genome‐wide linkage and association scans of adiponectin in two cohorts of subjects recruited in the Genetic Epidemiology of Metabolic Syndrome Study. The genome‐wide linkage scan was conducted in families of Turkish and southern European (TSE, n = 789) and Northern and Western European (NWE, N = 2,280) origin. A whole genome association (WGA) analysis (500K Affymetrix platform) was carried out in a set of unrelated NWE subjects consisting of approximately 1,000 subjects with dyslipidemia and 1,000 overweight subjects with normal lipids. Peak evidence for linkage occurred at chromosome 8p23 in NWE subjects (lod = 3.10) and at chromosome 3q28 near ADIPOQ, the adiponectin structural gene, in TSE subjects (lod = 1.70). In the WGA analysis, the single‐nucleotide polymorphisms (SNPs) most strongly associated with adiponectin were rs3774261 and rs6773957 (P < 10?7). These two SNPs were in high linkage disequilibrium (r2 = 0.98) and located within ADIPOQ. Interestingly, our fourth strongest region of association (P < 2 × 10?5) was to an SNP within CDH13, whose protein product is a newly identified receptor for high‐molecular‐weight species of adiponectin. Through WGA analysis, we confirmed previous studies showing SNPs within ADIPOQ to be strongly associated with variation in adiponectin levels and further observed these to have the strongest effects on adiponectin levels throughout the genome. We additionally identified a second gene (CDH13) possibly influencing variation in adiponectin levels. The impact of these SNPs on health and disease has yet to be determined.  相似文献   

18.

Background

Although there is abundant evidence that human longevity is heritable, efforts to map loci responsible for variation in human lifespan have had limited success.

Methodology/Principal Findings

We identified individuals from a large multigenerational population database (the Utah Population Database) who exhibited high levels of both familial longevity and individual longevity. This selection identified 325 related “affected individuals”, defined as those in the top quartile for both excess longevity (EL = observed lifespan – expected lifespan) and familial excess longevity (FEL = weighted average EL across all relatives). A whole-genome scan for genetic linkage was performed on this sample using a panel of 1100 microsatellite markers. A strongly suggestive peak (Z = 4.2, Monte Carlo-adjusted p-value 0.09) was observed in the vicinity of D3S3547 on chromosome 3p24.1, at a point nearly identical to that reported recently by an independent team of researchers from Harvard Medical School (HMS) [1]. Meta-analysis of linkage scores on 3p from the two studies produced a minimum nominal p-value of 1.005×10−9 at 55 cM. Other potentially noteworthy peaks in our data occur on 18q23-24, 8q23, and 17q21. Meta-analysis results from combined UPDB and HMS data yielded additional support, but not formal replication, for linkage on 8q, 9q, and 17q.

Conclusions/Significance

Corroboration of the linkage of exceptional longevity to 3p22-24 greatly strengthens the case that genes in this region affect variation in longevity and suggest, therefore, an important role in the regulation of human lifespan. Future efforts should include intensive study of the 3p22-24 region.  相似文献   

19.
Although obesity is more prevalent in Hispanics than non-Hispanic whites in the United States, little is known about the genetic etiology of the related traits in this population. To identify genetic loci influencing obesity in non-Mexican Hispanics, we performed a genome-wide linkage scan in 1,390 subjects from 100 Caribbean Hispanic families on six obesity-related quantitative traits: body mass index (BMI), body weight, waist circumference, waist-to-hip ratio, abdominal and average triceps skinfold thickness after adjusting for significant demographic and lifestyle factors. We then carried out an association analysis of the linkage peaks and the FTO gene in an independent community-based Hispanic subcohort (N = 652, 64% Caribbean Hispanics) from the Northern Manhattan Study. Evidence of linkage was strongest on 1q43 with multipoint LOD score of 2.45 (p = 0.0004) for body weight. Suggestive linkage evidence of LOD > 2.0 was also identified on 1q43 for BMI (LOD = 2.03), 14q32 for abdominal skinfold thickness (LOD = 2.17), 16p12 for BMI (LOD = 2.27) and weight (LOD = 2.26), and 16q23–24 for average triceps skinfold thickness (LOD = 2.32). In the association analysis of 6,440 single nucleotide polymorphisms (SNPs) under 1-LOD unit down regions of our linkage peaks on chromosome 1q43 and 16p12 as well as in the FTO gene, we found that two SNPs (rs6665519 and rs669231) on 1q43 and one FTO SNP (rs12447427) were significantly associated with BMI or body weight after adjustment for multiple testing. Our results suggest that in addition to FTO, multiple genetic loci, particularly those on 1q43 region, may contribute to the variations in obesity-related quantitative traits in Caribbean Hispanics.  相似文献   

20.
Objectives: To evaluate the frequency of apolipoprotein (APOE) alleles and determine whether APOE type 4 allele (?4) was associated with edentulousness even when certain factors were controlled. Background: The APOE are important in lipid homeostasis, and APOE ?4 has been found in many diseases and to have a negative impact on longevity. Tooth loss is more common in ill aged subjects with low income and education. Materials and methods: In a population‐based study involving 1860 subjects between 35 and 85 years 1321 dentate (mean age = 54; 54% women, 46% men) and 539 edentulous (mean age = 72; 62% women, 38% men) subjects were studied. Logistic regression was performed with dentate/edentulous as dependent variables and years of education, socio‐economic status, social network, stress level, handicap from birth, 23 various diseases and APOE ?4 as covariates. Thereafter, APOE ?4 frequencies were studied in 342 dentate and 336 edentulous subjects 50–85 years of age. The subjects were matched with regard to age, gender, years of education, living condition, stress level, handicap from birth and 23 various diseases. Results: APOE allele frequency in the total group was ?2 = 7.8%, ?3 = 76.4% and ?4 = 15.8%. Age, living condition, years of education and APOE ?4 were significant covariates in edentulous subjects (p ≤ 0.001). APOE ?4 in the matched groups revealed significant differences between the dentate group and the edentulous group (χ2 = 5.68; p = 0.017). There was no group effect (F(29,648) = 0.849; p < 0.696; Wilks’ lambda = 0.963). In the dentate group, the frequencies of APOE were: ?2 = 8.8%, ?3 = 77.9% and ?4 = 13.3%. Corresponding frequencies of APOE in the edentulous group were: ?2 = 6.6%, ?3 = 75.4% and ?4 = 18.0%. Conclusion: Despite matching both groups with regard to different background factors, the edentulous group had a higher frequency of APOE ?4 than the dentate group. Thus, genetic factors might contribute to greater risk in developing complex oral diseases leading to tooth loss or just be an indication that the subjects in our study carrying APOE ?4 are more fragile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号