首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
There are over one million described invertebrate species on Earth, the majority of which are likely to inhabit the highly biodiverse rain forests around the equator. These are some of the most vulnerable ecosystems on Earth due to the pressures of deforestation and climate change with many of their inhabitants at risk of extinction. Invertebrates play a major role in ecosystem functioning from decomposition and nutrient cycling to herbivory and pollination; however, while our understanding of these roles is improving, we are far from being able to predict the consequences of further deforestation, climate change, and biodiversity loss due to the lack of comparative data and the high proportion of species which remain to be discovered. As we move into an era of increased pressure on old-growth habitats and biodiversity, it is imperative that we understand how changes to invertebrate communities, and the extinction of species, affect ecosystems. Innovative and comprehensive methods that approach these issues are needed. Here, we highlight priorities for future tropical terrestrial invertebrate research such as the efficiency of sustainable land management, exploration of innovative methods for better understanding of invertebrate ecology and behavior, and quantifying the role of invertebrates in ecosystem functioning.  相似文献   

2.
Forest ecosystems and their associated natural, cultural and economic values are highly vulnerable to climate driven changes in fire regimes. A detailed knowledge of forest ecosystem responses to altered fire regimes is a necessary underpinning to inform options for adaptive responses under climate change, as well as for providing a basis for understanding how patterns of distribution of vegetation communities that comprise montane forest ecosystems may change in the future. Unplanned consequential adaptation of both natural and human systems, i.e. autonomous adaptation, will occur without planned intervention, with potentially negative impacts on ecosystem services. The persistence of forest stands under changing fire regimes and the maintenance of the ecosystem services that they provide pivot upon underlying response traits, such as the ability to resprout, that determine the degree to which composition, structure and function are likely to change. The integration of ecosystem dynamics into conceptual models and their use in exploring adaptation pathways provides options for policy makers and managers to move from autonomous to planned adaptation responses. Understanding where autonomous adaptation provides a benefit and where it proves potentially undesirable is essential to inform adaptation choices. Plausible scenarios of ecological change can be developed to improve an understanding of the nature and timing of interventions and their consequences, well before natural and human systems autonomously adapt in ways that may be detrimental to the long‐term provision of ecosystem services. We explore the utility of this approach using examples from temperate montane forest ecosystems of southeastern Australia.  相似文献   

3.
It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation–soil feedbacks. One fruitful avenue for studying such changing feedbacks is through plant functional traits, as an understanding of these traits may help us to understand and synthesise (1) responses of vegetation (through ‘response traits’ and ‘specific response functions’ of each species) to winter climate and (2) the effects of changing vegetation composition (through ‘effect traits’ and ‘specific effect functions’ of each species) on soil functions. It is the relative correspondence of variation in response and effect traits that will provide useful data on the impacts of winter climate change on carbon and nutrient cycling processes. Here we discuss several examples of how the trait-based, response–effect framework can help scientists to better understand the effects of winter warming on key ecosystem functions in cold biomes. These examples support the view that measuring species for their response and effect traits, and how these traits are linked across species through correspondence of variation in specific response and effects functions, may be a useful approach for teasing out the contribution of changing vegetation composition to winter warming effects on ecosystem functions. This approach will be particularly useful when linked with ecosystem-level measurements of vegetation and process responses to winter warming along natural gradients, over medium time scales in given sites or in response to experimental climate manipulations.  相似文献   

4.
Climate change is threatening tropical reefs across the world, with most scientists agreeing that the current changes in climate conditions are occurring at a much faster rate than in the past and are potentially beyond the capacity of reefs to adapt and recover. Current research in tropical ecosystems focuses largely on corals and fishes, although other benthic marine invertebrates provide crucial services to reef systems, with roles in nutrient cycling, water quality regulation, and herbivory. We review available information on the effects of environmental conditions associated with climate change on noncoral tropical benthic invertebrates, including inferences from modern and fossil records. Increasing sea surface temperatures may decrease survivorship and increase the developmental rate, as well as alter the timing of gonad development, spawning, and food availability. The broad latitudinal distribution and associated temperature ranges of several pantropical taxa suggest that some reef communities may have an in‐built adaptive capacity. Tropical benthic invertebrates will also show species‐specific sublethal and lethal responses to sea‐level rise, ocean acidification, physical disturbance, runoff, turbidity, sedimentation, and changes in ocean circulation. In order to accurately predict a species' response to these stressors, we must consider the magnitude and duration of exposure to each stressor, as well as the physiology, mobility, and habitat requirements of the species. Stressors will not act independently, and many organisms will be exposed to multiple stressors concurrently, including anthropogenic stressors. Environmental changes associated with climate change are linked to larger ecological processes, including changes in larval dispersal and recruitment success, shifts in community structure and range extensions, and the establishment and spread of invasive species. Loss of some species will trigger economic losses and negative effects on ecosystem function. Our review is intended to create a framework with which to predict the vulnerability of benthic invertebrates to the stressors associated with climate change, as well as their adaptive capacity. We anticipate that this review will assist scientists, managers, and policy‐makers to better develop and implement regional research and management strategies, based on observed and predicted changes in environmental conditions.  相似文献   

5.
River ecosystem resilience to extreme flood events   总被引:1,自引:0,他引:1       下载免费PDF全文
Floods have a major influence in structuring river ecosystems. Considering projected increases in high‐magnitude rainfall events with climate change, major flooding events are expected to increase in many regions of the world. However, there is uncertainty about the effect of different flooding regimes and the importance of flood timing in structuring riverine habitats and their associated biotic communities. In addition, our understanding of community response is hindered by a lack of long‐term datasets to evaluate river ecosystem resilience to flooding. Here we show that in a river ecosystem studied for 30 years, a major winter flood reset the invertebrate community to a community similar to one that existed 15 years earlier. The community had not recovered to the preflood state when recurrent summer flooding 9 years later reset the ecosystem back to an even earlier community. Total macroinvertebrate density was reduced in the winter flood by an order of magnitude more than the summer flood. Meiofaunal invertebrates were more resilient to the flooding than macroinvertebrates, possibly due to their smaller body size facilitating greater access to in‐stream refugia. Pacific pink salmon escapement was markedly affected by the winter flood when eggs were developing in redds, compared to summer flooding, which occurred before the majority of eggs were laid. Our findings inform a proposed conceptual model of three possible responses to flooding by the invertebrate community in terms of switching to different states and effects on resilience to future flooding events. In a changing climate, understanding these responses is important for river managers to mitigate the biological impacts of extreme flooding effects.  相似文献   

6.
Fens represent a large array of ecosystem services, including the highest biodiversity found among wetlands, hydrological services, water purification and carbon sequestration. Land‐use change and drainage has severely damaged or annihilated these services in many parts of North America and Europe; restoration plans are urgently needed at the landscape level. We review the major constraints on the restoration of rich fens and fen water bodies in agricultural areas in Europe and disturbed landscapes in North America: (i) habitat quality problems: drought, eutrophication, acidification, and toxicity, and (ii) recolonization problems: species pools, ecosystem fragmentation and connectivity, genetic variability, and invasive species; and here provide possible solutions. We discuss both positive and negative consequences of restoration measures, and their causes. The restoration of wetland ecosystem functioning and services has, for a long time, been based on a trial‐and‐error approach. By presenting research and practice on the restoration of rich fen ecosystems within agricultural areas, we demonstrate the importance of biogeochemical and ecological knowledge at different spatial scales for the management and restoration of biodiversity, water quality, carbon sequestration and other ecosystem services, especially in a changing climate. We define target processes that enable scientists, nature managers, water managers and policy makers to choose between different measures and to predict restoration prospects for different types of deteriorated fens and their starting conditions.  相似文献   

7.
Hyporheic rehabilitation in rivers: restoring vertical connectivity   总被引:4,自引:0,他引:4  
1. The hyporheic zone below the channel and banks of many rivers where surface water and ground water exchanges plays a crucial functional role in the biogeochemical transformation of water, mediated by active microbial biofilms. This zone also harbours assemblages of invertebrates that graze biofilms, contribute to secondary production, and can alter the porosity of the hyporheic zone through their movement or burrowing activities. 2. Many human activities cause interstitial sedimentation or disrupt surface–groundwater hydrological linkages, impacting upon ecological processes in the hyporheic zone. However, strategies for river rehabilitation seldom explicitly consider the hyporheic zone or seek to restore lost vertical linkages with groundwater. Instead, restoration goals target surface, riparian or floodplain features even though current river ecosystem theory emphasises the three dimensions of hydrological connectivity. To guide effective, holistic river restoration, scientists and managers therefore need information on the mechanisms by which energy and material are transferred in the hyporheic zone and which ecosystem services are thus provided. 3. Other gaps in our understanding of hyporheic zone rehabilitation include recruitment processes of the hyporheos and the relative importance of groups of hyporheic invertebrates in rivers differing in substratum size, disturbance frequency and groundwater linkages. Carefully designed experiments that assess responses to hyporheic rehabilitation strategies will provide valuable data at varying scales (e.g. distribution of hyporheic habitat types at the reach scale) for management as well as providing insights into the mechanisms controlling hyporheic invertebrate assemblages and ecological processes. Fully successful river rehabilitation must include restoration of vertical linkages between the river and its shallow groundwater aquifers.  相似文献   

8.
Ecosystem services provided by waterbirds   总被引:1,自引:0,他引:1  
Ecosystem services are ecosystem processes that directly or indirectly benefit human well‐being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation.  相似文献   

9.
Understanding the responses of biodiversity to drivers of change and the effects of biodiversity on ecosystem properties and ecosystem services is a key challenge in the context of global environmental change. We performed a systematic review and meta‐analysis of the scientific literature linking direct drivers of change and ecosystem services via functional traits of three taxonomic groups (vegetation, invertebrates, and vertebrates) to: (1) uncover trends and research biases in this field; and (2) synthesize existing empirical evidence. Our results show the existence of important biases in published studies related to ecosystem types, taxonomic groups, direct drivers of change, ecosystem services, geographical range, and the spatial scale of analysis. We found multiple evidence of links between drivers and services mediated by functional traits, particularly between land‐use changes and regulating services in vegetation and invertebrates. Seventy‐five functional traits were recorded in our sample. However, few of these functional traits were repeatedly found to be associated with both the species responses to direct drivers of change (response traits) and the species effects on the provision of ecosystem services (effect traits). Our results highlight the existence of potential “key functional traits,” understood as those that have the capacity to influence the provision of multiple ecosystem services, while responding to specific drivers of change, across a variety of systems and organisms. Identifying “key functional traits” would help to develop robust indicator systems to monitor changes in biodiversity and their effects on ecosystem functioning and ecosystem services supply.  相似文献   

10.
The influence of biotic interactions on soil biodiversity   总被引:13,自引:1,他引:12  
Wardle DA 《Ecology letters》2006,9(7):870-886
Belowground communities usually support a much greater diversity of organisms than do corresponding aboveground ones, and while the factors that regulate their diversity are far less well understood, a growing number of recent studies have presented data relevant to understanding how these factors operate. This review considers how biotic factors influence community diversity within major groups of soil organisms across a broad spectrum of spatial scales, and addresses the mechanisms involved. At the most local scale, soil biodiversity may potentially be affected by interactions within trophic levels or by direct trophic interactions. Within the soil, larger bodied invertebrates can also influence diversity of smaller sized organisms by promoting dispersal and through modification of the soil habitat. At larger scales, individual plant species effects, vegetation composition, plant species diversity, mixing of plant litter types, and aboveground trophic interactions, all impact on soil biodiversity. Further, at the landscape scale, soil diversity also responds to vegetation change and succession. This review also considers how a conceptual understanding of the biotic drivers of soil biodiversity may assist our knowledge of key topics in community and ecosystem ecology, such as aboveground–belowground interactions, and the relationship between biodiversity and ecosystem functioning. It is concluded that an improved understanding of what drives the diversity of life in the soil, incorporated within appropriate conceptual frameworks, should significantly aid our understanding of the structure and functioning of terrestrial communities.  相似文献   

11.
植物功能性状对生态系统服务影响研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
潘权  郑华  王志恒  文志  杨延征 《植物生态学报》2021,45(10):1140-1153
全面认识和理解生态系统服务的形成机制是维持其持续供给的前提。植物功能性状直接参与多种生态系统过程, 影响生态系统服务供给, 探讨植物功能性状与生态系统服务的关系是揭示生态系统服务形成机制的重要途径。该文采用系统的文献综述方法, 分析了植物功能性状与生态系统服务关系的研究特点, 总结了影响不同生态系统服务的主要植物功能性状, 阐述了可能的影响途径。结果表明: 植物功能性状与生态系统服务关系研究以草地和森林等自然生态系统为主; 大部分研究集中在生态系统供给服务和支持服务, 包括生物量、净初级生产力、土壤肥力等; 根据植物功能性状对不同生态系统服务的影响程度, 植物功能性状可以聚类为土壤保持服务相关性状、水分循环相关性状、多功能相关性状、产品提供服务与养分循环相关性状以及授粉与生物控制服务相关性状; 并阐述了植物功能性状指标影响不同的生态系统服务途径。围绕植物功能性状对生态系统服务的影响, 今后尚需进一步探讨生态系统多功能性、植物功能性状相关性、气候变化和人类活动不确定性、时空尺度差异等因素对二者关系的影响。  相似文献   

12.
气候变化、火干扰与生态系统生产力   总被引:11,自引:3,他引:8       下载免费PDF全文
 综述了气候变化、火干扰与生态系统生产力之间的相互作用关系以及目前相关的研究进展。侧重介绍了气候变化与火干扰之间的相互作用关系以及火干扰对生态系统生产力的影响。气候变化通过作用于可燃物质数量、湿度和火灾天气来影响火干扰的发生频率和强度,而火干扰过程释放大量温室气体和烟尘物质反过来也会对气候变化产生影响。另外,火干扰过程改变了火烧迹地的土壤生物地球化学性质、养分循环和分配以及大气组成,进而对生态系统对CO2的吸收能力产生影响。正确理解三者之间的逻辑关系,对于我们有效地利用火管理提高区域生态系统碳吸收,减少碳排放,减缓全球变化速率,都具有重要的指导意义 。  相似文献   

13.
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.  相似文献   

14.
  1. Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.
  2. In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as “whole‐of‐community” rewilding.
  3. We provide a framework for whole‐of‐community rewilding and describe empirical case studies as practical applications of this under‐researched restoration tool that land managers can use to improve restoration outcomes.
  4. We hope this new perspective on whole‐of‐community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade‐offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.
  相似文献   

15.
Soil multitrophic interactions transfer energy from plants as the predominant primary producer to communities of organisms that occupy different positions in the food chain and are linked by multiple ecological networks, which is the soil food web. Soil food web sequesters carbon, cycles nutrients, maintains soil health to suppress pathogens, helps plants tolerate abiotic and biotic stress, and maintains ecosystem resilience and sustainability. Understanding the influence of climate change on soil multitrophic interactions is necessary to maintain these essential ecosystem services. But summarising this influence is a daunting task due to a paucity of knowledge and a lack of clarity on the ecological networks that constitute these interactions. The scant literature is fragmented along disciplinary lines, often reporting inconsistent findings that are context and scale‐dependent. We argue for the differentiation of soil multitrophic interactions along functional and spatial domains to capture cross‐disciplinary knowledge and mechanistically link all ecological networks to reproduce full functionalities of the soil food web. Distinct from litter mediated interactions in detritosphere or elsewhere in the soil, the proposed ‘pathogen suppression’ and ‘stress tolerance’ interactions operate in the rhizosphere. A review of the literature suggests that climate change will influence the relative importance, frequency and composition of functional groups, their trophic interactions and processes controlling these interactions. Specific climate change factors generally have a beneficial influence on pathogen suppression and stress tolerance, but findings on the overall soil food web are inconsistent due to a high level of uncertainty. In addition to an overall improvement in the understanding of soil multitrophic interactions using empirical and modelling approaches, we recommend linking biodiversity to function, understanding influence of combinations of climatic factors on multitrophic interactions and the evolutionary ecology of multitrophic interactions in a changing climate as areas that deserve most attention.  相似文献   

16.
The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.  相似文献   

17.
Future human well‐being under climate change depends on the ongoing delivery of food, fibre and wood from the land‐based primary sector. The ability to deliver these provisioning services depends on soil‐based ecosystem services (e.g. carbon, nutrient and water cycling and storage), yet we lack an in‐depth understanding of the likely response of soil‐based ecosystem services to climate change. We review the current knowledge on this topic for temperate ecosystems, focusing on mechanisms that are likely to underpin differences in climate change responses between four primary sector systems: cropping, intensive grazing, extensive grazing and plantation forestry. We then illustrate how our findings can be applied to assess service delivery under climate change in a specific region, using New Zealand as an example system. Differences in the climate change responses of carbon and nutrient‐related services between systems will largely be driven by whether they are reliant on externally added or internally cycled nutrients, the extent to which plant communities could influence responses, and variation in vulnerability to erosion. The ability of soils to regulate water under climate change will mostly be driven by changes in rainfall, but can be influenced by different primary sector systems' vulnerability to soil water repellency and differences in evapotranspiration rates. These changes in regulating services resulted in different potentials for increased biomass production across systems, with intensively managed systems being the most likely to benefit from climate change. Quantitative prediction of net effects of climate change on soil ecosystem services remains a challenge, in part due to knowledge gaps, but also due to the complex interactions between different aspects of climate change. Despite this challenge, it is critical to gain the information required to make such predictions as robust as possible given the fundamental role of soils in supporting human well‐being.  相似文献   

18.
Relatively little is known about how the future effects of climatic change, including increases in sea level, temperature and storm severity and frequency, will impact on patterns of biodiversity on coral reefs, with the notable exception of recent work on corals and fish in tropical reef ecosystems. Sessile invertebrates such as ascidians, sponges and bryozoans occupying intertidal rubble habitats on coral reefs contribute significantly to the overall biodiversity and ecosystem function, but there is little or no information available on the likely impacts on these species from climate change. The existing strong physical gradients in these intertidal habitats will be exacerbated under predicted climatic change. By examining the distribution and abundance of nonscleractinian, sessile invertebrate assemblages exposed to different levels of wave action and at different heights on the shore around a coral reef, we show that coral reef intertidal biodiversity is particularly sensitive to physical disturbance. As physical disturbance regimes increase due to more intense storms and wave action associated with global warming, we can expect to see a corresponding decrease in the diversity of these cryptic sessile assemblages. This could impact negatively on the future health and productivity of coral reef ecosystems, given the ecosystem services these organisms provide.  相似文献   

19.
Drylands occupy large portions of the Earth, and are a key terrestrial biome from the socio-ecological point of view. In spite of their extent and importance, the impacts of global environmental change on them remain poorly understood. In this introduction, we review some of the main expected impacts of global change in drylands, quantify research efforts on the topic, and highlight how the articles included in this theme issue contribute to fill current gaps in our knowledge. Our literature analyses identify key under-studied areas that need more research (e.g. countries such as Mauritania, Mali, Burkina Faso, Chad and Somalia, and deserts such as the Thar, Kavir and Taklamakan), and indicate that most global change research carried out to date in drylands has been done on a unidisciplinary basis. The contributions included here use a wide array of organisms (from micro-organisms to humans), spatial scales (from local to global) and topics (from plant demography to poverty alleviation) to examine key issues to the socio-ecological impacts of global change in drylands. These papers highlight the complexities and difficulties associated with the prediction of such impacts. They also identify the increased use of long-term experiments and multidisciplinary approaches as priority areas for future dryland research. Major advances in our ability to predict and understand global change impacts on drylands can be achieved by explicitly considering how the responses of individuals, populations and communities will in turn affect ecosystem services. Future research should explore linkages between these responses and their effects on water and climate, as well as the provisioning of services for human development and well-being.  相似文献   

20.
Climate change and biological invasions are threatening biodiversity and ecosystem services worldwide. It has now been widely acknowledged that climate change will affect biological invasions. A large number of studies have investigated predicted shifts and other changes in the geographic ranges of invasive alien species related to climate change using modeling approaches. Yet these studies have provided contradictory evidence, and no consensus has been reached. We conducted a systematic review of 423 modeling case studies included in 71 publications that have examined the predicted effects of climate change on those species. We differentiate the approaches used in these studies and synthesize their main results. Our results reaffirm the major role of climate change as a driver of invasive alien species distribution in the future. We found biases in the literature both regarding the taxa, toward plants and invertebrates, and the areas of the planet investigated. Despite these biases, we found for the plants and vertebrates studied that climate change will more frequently contribute to a decrease in species range size than an increase in the overall area occupied. This is largely due to oceans preventing terrestrial invaders from spreading poleward. In contrast, we found that the ranges of invertebrates and pathogens studied are more likely to increase following climate change. An important caveat to these findings is that researchers have rarely considered the effects of climate change on transport, introduction success, or the resulting impacts. We recommend closing these research gaps, and propose additional avenues for future investigations, as well as opportunities and challenges for managing invasions under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号