首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Epigenetics》2013,8(10):1125-1132
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.  相似文献   

2.
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.  相似文献   

3.
Epigenetic events are crucial for early development, but can be influenced by environmental factors, potentially programming the genome for later adverse health outcomes. The insulin-like growth factor 2 (IGF2)/H19 locus is crucial for prenatal growth and the epigenetic state at this locus is environmentally labile. Recent studies have implicated maternal factors, including folate intake and smoking, in the regulation of DNA methylation at this locus, although data are often conflicting in the direction and magnitude of effect. Most studies have focused on single tissues and on one or two differentially-methylated regions (DMRs) regulating IGF2/H19 expression. In this study, we investigated the relationship between multiple shared and non-shared gestational/maternal factors and DNA methylation at four IGF2/H19 DMRs in five newborn cell types from 67 pairs of monozygotic and 49 pairs of dizygotic twins. Data on maternal and non-shared supply line factors were collected during the second and third trimesters of pregnancy and DNA methylation was measured via mass spectrometry using Sequenom MassArray EpiTyper analysis. Our exploratory approach showed that the site of umbilical cord insertion into the placenta in monochorionic twins has the strongest positive association with methylation in all IGF2/H19 DMRs (p < 0.05). Further, evidence for tissue- and locus-specific effects were observed, emphasizing that responsiveness to environmental exposures in utero cannot be generalized across genes and tissues, potentially accounting for the lack of consistency in previous findings. Such complexity in responsiveness to environmental exposures in utero has implications for all epigenetic studies investigating the developmental origins of health and disease.  相似文献   

4.
SK Murphy  Z Huang  C Hoyo 《PloS one》2012,7(7):e40924
Epigenetic plasticity in relation to in utero exposures may mechanistically explain observed differences in the likelihood of developing common complex diseases including hypertension, diabetes and cardiovascular disease through the cumulative effects of subtle alterations in gene expression. Imprinted genes are essential mediators of growth and development and are characterized by differentially methylated regulatory regions (DMRs) that carry parental allele-specific methylation profiles. This theoretical 50% level of methylation provides a baseline from which endogenously- or exogenously-induced deviations in methylation can be detected. We quantified DNA methylation at imprinted gene DMRs in a large panel of human conceptal tissues, in matched buccal cell specimens collected at birth and at one year of age, and in the major cell fractions of umbilical cord blood to assess the stability of methylation at these regions. DNA methylation was measured using validated pyrosequencing assays at seven DMRs regulating the IGF2/H19, DLK1/MEG3, MEST, NNAT and SGCE/PEG10 imprinted domains. DMR methylation did not significantly differ for the H19, MEST and SGCE/PEG10 DMRs across all conceptal tissues analyzed (ANOVA p>0.10). Methylation differences at several DMRs were observed in tissues from brain (IGF2 and MEG3-IG DMRs), liver (IGF2 and MEG3 DMRs) and placenta (both DLK1/MEG3 DMRs and NNAT DMR). In most infants, methylation profiles in buccal cells at birth and at one year of age were comparable, as was methylation in the major cell fractions of umbilical cord blood. Several infants showed temporal deviations in methylation at multiple DMRs. Similarity of inter-individual and intra-individual methylation at some, but not all of the DMRs analyzed supports the possibility that methylation of these regions can serve as useful biosensors of exposure.  相似文献   

5.
Folic acid (FA) supplementation before and during pregnancy has been associated with decreased risk of neural tube defects although recent reports suggest it may also increase the risk of other chronic diseases. We evaluated exposure to maternal FA supplementation before and during pregnancy in relation to aberrant DNA methylation at two differentially methylated regions (DMRs) regulating insulin-like growth factor 2 (IGF2) expression in infants. Aberrant methylation at these regions has been associated with IGF2 deregulation and increased susceptibility to several chronic diseases. Using a self-administered questionnaire, we assessed FA intake before and during pregnancy in 438 pregnant women. Pyrosequencing was used to measure methylation at two IGF2 DMRs in umbilical cord blood leukocytes. Mixed models were used to determine relationships between maternal FA supplementation before or during pregnancy and DNA methylation levels at birth. Average methylation at the H19 DMR was 61.2%. Compared to infants born to women reporting no FA intake before or during pregnancy, methylation levels at the H19 DMR decreased with increasing FA intake (2.8%, p = 0.03 and 4.9%, p = 0.04, for intake before and during pregnancy, respectively). This methylation decrease was most pronounced in male infants (p = 0.01). Methylation alterations at the H19 DMR are likely an important mechanism by which FA risks and/or benefits are conferred in utero. Because stable methylation marks at DMRs regulating imprinted genes are acquired before gastrulation, they may serve as archives of early exposures with the potential to improve our understanding of developmental origins of adult disease.Key words: folic acid, epigenetics, IGF2, periconception, prenatal, exposure  相似文献   

6.
7.
Imprinted genes are known to be crucial for placental development and fetal growth in mammals, but no primary epigenetic abnormality in placenta has been documented to compromise human fetal growth. Imprinted genes demonstrate parent-of-origin-specific allelic expression that is epigenetically regulated i.e. extrinsic to the primary DNA sequence. To undertake an epigenetic analysis of poor fetal growth in placentae and cord blood tissues, we first established the tissue-specific patterns of methylation and imprinted gene expression for two imprinting clusters (KvDMR and H19 DMR) on chromosome 11p15 in placentae and neonatal blood for 20 control cases and 24 Small for Gestational Age (SGA) cases. We confirmed that, in normal human placenta, the H19 promoter is unmethylated. In contrast, most other human tissues show paternal methylation. In addition, we showed that the IGF2 DMR2, also paternally methylated in most human tissues, exhibits hypomethylation in placentae. However, in neonatal blood DNA, these two regions maintain the differential methylation status seen in most other tissues. Significantly, we have been able to demonstrate that placenta does maintain differential methylation at the imprinting control regions H19 DMR and KvDMR. Of note, in one SGA placenta, we found a methylation alteration at the H19 DMR and concomitant biallelic expression of the H19 gene, suggesting that loss of imprinting at H19 is one cause of poor fetal growth in humans. Of particular interest, we demonstrated also a decrease in IGF2 mRNA levels in all SGA placentae and showed that the decrease is, in most cases, independent of H19 regulation.  相似文献   

8.
Changes in epigenetic programming of embryonic growth genes during pregnancy seem to affect fetal growth. Therefore, in a population-based prospective birth cohort in the Netherlands, we examined associations between fetal and infant growth and DNA methylation of IGF2DMR, H19 and MTHFR. For this study, we selected 69 case children born small-for-gestational age (SGA, birth weight <-2SDS) and 471 control children. Fetal growth was assessed with serial ultrasound measurements. Information on birth outcomes was retrieved from medical records. Infant weight was assessed at three and six months. Methylation was assessed in DNA extracted from umbilical cord white blood cells. Analyses were performed using linear mixed models with DNA methylation as dependent variable. The DNA methylation levels of IGF2DMR and H19 in the control group were, median (90% range), 53.6% (44.5–61.6) and 30.0% (25.6–34.2) and in the SGA group 52.0% (43.9–60.9) and 30.5% (23.9–32.9), respectively. The MTHFR region was found to be hypomethylated with limited variability in the control and SGA group, 2.5% (1.4–4.0) and 2.4% (1.5–3.8), respectively. SGA was associated with lower IGF2DMR DNA methylation (β = −1.07, 95% CI −1.93; −0.21, P-value = 0.015), but not with H19 methylation. A weight gain in the first three months after birth was associated with lower IGF2DMR DNA methylation (β = −0.53, 95% CI −0.91; −0.16, P-value = 0.005). Genetic variants in the IGF2/H19 locus were associated with IGF2DMR DNA methylation (P-value<0.05), but not with H19 methylation. Furthermore, our results suggest a possibility of mediation of DNA methylation in the association between the genetic variants and SGA. To conclude, IGF2DMR and H19 DNA methylation is associated with fetal and infant growth.  相似文献   

9.
10.

Background

Countries worldwide recommend women planning pregnancy to use daily 400 µg of synthetic folic acid in the periconceptional period to prevent birth defects in children. The underlying mechanisms of this preventive effect are not clear, however, epigenetic modulation of growth processes by folic acid is hypothesized. Here, we investigated whether periconceptional maternal folic acid use and markers of global DNA methylation potential (S-adenosylmethionine and S-adenosylhomocysteine blood levels) in mothers and children affect methylation of the insulin-like growth factor 2 gene differentially methylation region (IGF2 DMR) in the child. Moreover, we tested whether the methylation of the IGF2 DMR was independently associated with birth weight.

Methodology/Principal Findings

IGF2 DMR methylation in 120 children aged 17 months (SD 0.3) of whom 86 mothers had used and 34 had not used folic acid periconceptionally were studied. Methylation was measured of 5 CpG dinucleotides covering the DMR using a mass spectrometry-based method. Children of mother who used folic acid had a 4.5% higher methylation of the IGF2 DMR than children who were not exposed to folic acid (49.5% vs. 47.4%; p = 0.014). IGF2 DMR methylation of the children also was associated with the S-adenosylmethionine blood level of the mother but not of the child (+1.7% methylation per SD S-adenosylmethionine; p = 0.037). Finally, we observed an inverse independent association between IGF2 DMR methylation and birth weight (−1.7% methylation per SD birthweight; p = 0.034).

Conclusions

Periconceptional folic acid use is associated with epigenetic changes in IGF2 in the child that may affect intrauterine programming of growth and development with consequences for health and disease throughout life. These results indicate plasticity of IGF2 methylation by periconceptional folic acid use.  相似文献   

11.
The diabetes mellitus (DM)-induced reduction of neurogenesis in the hippocampus is consequently accompanied by cognitive decline. The present study set out to define the critical role played by long noncoding RNA H19 (lncRNA H19) in the apoptosis of hippocampal neurons, as well as oxidative stress (OS) in streptozotocin (STZ)-induced DM mice through regulation of insulin-like growth factor 2 (IGF2) methylation. The expression of lncRNA H19 in the hippocampal neurons and surviving neurons were detected. Hippocampal neurons were cultured and transfected with oe-H19, sh-H19, oe-IGF2, or sh-IGF2, followed by detection of the expressions of IGF2 and apoptosis-related genes. Determination of the lipid peroxide and glutathione levels was conducted, while antioxidant enzyme activity was identified. The IGF2 methylation, the binding of lncRNA H19 to DNA methyltransferase, and the binding of lncRNA H19 to IGF2 promoter region were detected. DM mice exhibited high expressions of H19, as well as a decreased hippocampal neurons survival rate. Higher lncRNA H19 expression was found in DM. Upregulated lncRNA H19 significantly increased the expression of Bax and caspase-3 but decreased that of Bcl-2, thus promoting the apoptosis of hippocampal neuron. Besides, upregulation of lncRNA H19 induced OS. LncRNA H19 was observed to bind specifically to the IGF2 gene promoter region and promote IGF2 methylation by enriching DNA methyltransferase, thereby silencing IGF2 expression. Taken together, downregulated lncRNA H19 reduces IGF2 methylation and enhances its expression, thereby suppressing hippocampal neuron apoptosis and OS in STZ-induced (DM) mice.  相似文献   

12.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

13.
《Reproductive biology》2021,21(4):100574
Polycyclic aromatic hydrocarbons (PAHs), as a kind of endocrine disruptors, can enter the fetus body cross the placental barrier from prenatal PAHs exposure to cause adverse birth outcomes. However, it is controversial association between prenatal PAHs exposure and low birth weight (LBW) of their infants. So the present study aimed to estimate the effects of prenatal PAHs exposure during the pregnancy on the risk of LBW in a Chinese cohort through modifying the DNA methylation states. A longitudinal prospective study with 407 pregnant women was established from May to October 2019. The prenatal PAHs exposure during the pregnancy was assessed using the internal dose such as the PAHs metabolites and PAH-DNA adducts in the umbilical cord blood. The methylation levels of genomic DNA and growth-related genes (IGF1 and IGF2) were assessed, while the expressions of these genes were both determined by RT-PCR and Elisa methods. The growth outcomes and relevant Z-scores were recorded at birth. The correlations between the DNA methylation status and concentrations of PAHs, expression levels of growth-related genes and body weight/WAZ were investigated as the measures. According to the PAH-DNA adducts, the subjects were divided into two groups: PAHs-exposed group (PAH-DNA adducts>0, n = 55) and non-exposed group (PAH-DNA adducts = 0, n = 352). Compared with the non-exposed group, it displayed marked decreased birth weight, and increased concentrations of PAHs and DNA methylation levels of the global genomic, IGF1 and IGF2 with their lower expressions in the PAHs-exposed group. These hypermethylation (global genomic, CpG14 and CpG15 of IGF1, and CpG14 of IGF2) were positively correlated with the contents of PAHs in the umbilical cord blood, and negatively correlated with the growth outcomes and their expressions. Totally, prenatal PAHs exposures may contribute to an increased risk of LBW of their infants by modulating the DNA methylation states of genomic DNA and growth-related genes (IGF1 and IGF2) in the umbilical cord blood, which could provide the prenatal prevention of PAHs exposure from possible environmental media except from the occupation and tobacco usage to ensure the health of their infants.  相似文献   

14.

Background

Differentially methylated regions (DMRs) are associated with many imprinted genes. In mice methylation at a DMR upstream of the H19 gene known as the Imprint Control region (IC1) is acquired in the male germline and influences the methylation status of DMRs 100 kb away in the adjacent Insulin-like growth factor 2 (Igf2) gene through long-range interactions. In humans, germline-derived or post-zygotically acquired imprinting defects at IC1 are associated with aberrant activation or repression of IGF2, resulting in the congenital growth disorders Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, respectively. In Wilms tumour and colorectal cancer, biallelic expression of IGF2 has been observed in association with loss of methylation at a DMR in IGF2. This DMR, known as DMR0, has been shown to be methylated on the silent maternal IGF2 allele presumably with a role in repression. The effect of IGF2 DMR0 methylation changes in the aetiology of BWS or SRS is unknown.

Methodology/Principal Findings

We analysed the methylation status of the DMR0 in BWS, SRS and Wilms tumour patients by conventional bisulphite sequencing and pyrosequencing. We show here that, contrary to previous reports, the IGF2 DMR0 is actually methylated on the active paternal allele in peripheral blood and kidney. This is similar to the IC1 methylation status and is inconsistent with the proposed silencing function of the maternal IGF2 allele. Beckwith-Wiedemann and Silver-Russell patients with IC1 methylation defects have similar methylation defects at the IGF2 DMR0, consistent with IC1 regulating methylation at IGF2 in cis. In Wilms tumour, however, methylation profiles of IC1 and IGF2 DMR0 are indicative of methylation changes occurring on both parental alleles rather than in cis.

Conclusions/Significance

These results support a model in which DMR0 and IC1 have opposite susceptibilities to global hyper and hypomethylation during tumorigenesis independent of the parent of origin imprint. In contrast, during embryogenesis DMR0 is methylated or demethylated according to the germline methylation imprint at the IC1, indicating different mechanisms of imprinting loss in neoplastic and non-neoplastic cells.  相似文献   

15.
《Epigenetics》2013,8(7):928-936
Folic acid (FA) supplementation before and during pregnancy has been associated with decreased risk of neural tube defects although recent reports suggest it may also increase the risk of other chronic diseases. We evaluated exposure to maternal FA supplementation before and during pregnancy in relation to aberrant DNA methylation at two differentially methylated regions (DMRs) regulating Insulin-like Growth Factor 2 (IGF2) expression in infants. Aberrant methylation at these regions has been associated with IGF2 deregulation and increased susceptibility to several chronic diseases. Using a self-administered questionnaire, we assessed FA intake before and during pregnancy in 438 pregnant women. Pyrosequencing was used to measure methylation at two IGF2 DMRs in umbilical cord blood leukocytes. Mixed models were used to determine relationships between maternal FA supplementation before or during pregnancy and DNA methylation levels at birth. Average methylation at the H19 DMR was 61.2%. Compared to infants born to women reporting no FA intake before or during pregnancy, methylation levels at the H19 DMR decreased with increasing FA intake (2.8%, p=0.03, and 4.9%, p=0.04, for intake before and during pregnancy, respectively). This methylation decrease was most pronounced in male infants (p=0.01). Methylation alterations at the H19 DMR are likely an important mechanism by which FA risks and/or benefits are conferred in utero. Because stable methylation marks at DMRs regulating imprinted genes are acquired before gastrulation, they may serve as archives of early exposures with the potential to improve our understanding of developmental origins of adult disease.  相似文献   

16.
This study was designed to identify the putative differentially methylated regions (DMRs) of the porcine imprinted genes insulin-like growth factor 2 and H19 (IGF2-H19), and to assess the genomic imprinting status of IGF2-H19 by identifying the methylation patterns of these regions in germ cells, and in tissues from porcine fetuses, an adult pig, as well as cloned offspring produced by somatic cell nuclear transfer (SCNT). Porcine IGF2-H19 DMRs exhibit a normal monoallelic methylation pattern (i.e., either the paternally- or the maternally derived allele is methylated) similar to the pattern observed for the same genes in the human and mice genomes. Examination of the methylation patterns of the IGF2-H19 DMRs revealed that the zinc finger protein binding sites CTCF1 and 2 did not exhibit differential methylation in both control and cloned offspring. In contrast, the CTCF3 and DMR2 loci of the IGF2 gene showed abnormal methylation in cloned offspring, but a normal differential or moderate methylation pattern in tissues from control offspring and an adult pig. Our data thus suggest that regulation of genomic imprinting at the porcine IGF2-H19 loci is conserved among species, and that the abnormal methylation pattern in the regulatory elements of imprinted genes may lead to an alteration in the coordinated expression of genes required for successful reprogramming, which, in consequence, may contribute to the low efficiency of porcine genome reprogramming induced by nuclear transfer.  相似文献   

17.
Beckwith-Wiedeman syndrome (BWS) and Klippel-Trenaunay-Weber syndrome (KTWS) are different human disorders characterized, among other features, by tissue overgrowth. Deregulation of one or more imprinted genes located at chromosome 11p15.5, of which insulin-like growth factor 2 (IGF2) is the most likely candidate, is believed to cause BWS, whereas the etiology of KTWS is completely obscure. We report a case of BWS and a case of KTWS in a single family. The probands, sons of two sisters, showed relaxation of the maternal IGF2 imprinting, although they inherited different 11p15.5 alleles from their mothers and did not show any chromosome rearrangement. The patient with BWS also displayed hypomethylation at KvDMR1, a maternally methylated CpG island within an intron of the KvLQT1 gene. The unaffected brother of the BWS proband shared the same maternal and paternal 11p15.5 haplotype with his brother, but the KvDMR1 locus was normally methylated. Methylation of the H19 gene was normal in both the BWS and KTWS probands. Linkage between the insulin-like growth factor 2 receptor (IGF2R) gene and the tissue overgrowth was also excluded. These results raise the possibility that a defective modifier or regulatory gene unlinked to 11p15.5 caused a spectrum of epigenetic alterations in the germ line or early development of both cousins, ranging from the relaxation of IGF2 imprinting in the KTWS proband to disruption of both the imprinted expression of IGF2 and the imprinted methylation of KvDMR1 in the BWS proband. Analysis of these data also indicates that loss of IGF2 imprinting is not necessarily linked to alteration of methylation at the KvDMR1 or H19 loci and supports the notion that IGF2 overexpression is involved in the etiology of the tissue hypertrophy observed in different overgrowth disorders, including KTWS.  相似文献   

18.
Choriocarcinomas are embryonal tumours with loss of imprinting and hypermethylation at the insulin-like growth factor 2 (IGF2)-H19 locus. The DNA methyltransferase inhibitor, 5-Aza-2′deoxycytidine (5-AzaCdR) is an approved epigenetic cancer therapy. However, it is not known to what extent 5-AzaCdR influences other epigenetic marks. In this study, we set out to determine whether 5-AzaCdR treatment can reprogram the epigenomic organization of the IGF2-H19 locus in a choriocarcinoma cancer cell line (JEG3). We found that localized DNA demethylation at the H19 imprinting control region (ICR) induced by 5-AzaCdR, reduced IGF2, increased H19 expression, increased CTCF and cohesin recruitment and changed histone modifications. Furthermore chromatin accessibility was increased locus-wide and chromatin looping topography was altered such that a CTCF site downstream of the H19 enhancers switched its association with the CTCF site upstream of the IGF2 promoters to associate with the ICR. We identified a stable chromatin looping domain, which forms independently of DNA methylation. This domain contains the IGF2 gene and is marked by a histone H3 lysine 27 trimethylation block between CTCF site upstream of the IGF2 promoters and the Centrally Conserved Domain upstream of the ICR. Together, these data provide new insights into the responsiveness of chromatin topography to DNA methylation changes.  相似文献   

19.
Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring’s methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24–28 weeks of pregnancy. DNA methylation was measured at > 485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10−06; none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10−13 < p < 4.0 × 10−03; including diabetes mellitus p = 4.3 × 10−11). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号