首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nucleotide sequence of a cDNA encoding the proenzyme of mouse S-adenosylmethionine decarboxylase (AdoMetDC) including 257 nucleotides of the 5' untranslated region has been determined. Comparison of the nucleotide sequence of the mouse 5' untranslated region with those of other mammals shows it to be highly conserved. The 52 nucleotides upstream from the translation initiation codon are identical in human, rat, bovine and mouse. The polyamines, spermidine and spermine, have been shown to inhibit AdoMetDC mRNA translation. An RNA gel retardation assay demonstrated that a cytoplasmic extract from mouse brain forms an RNA-protein complex with the completely conserved 5' untranslated sequence and that the complex formation is highly dependent on the presence of spermine. Crosslinking by UV irradiation shows that the complex contains a 39-kDa protein interacting with the 5' untranslated sequence. These data demonstrate spermine-dependent specific protein binding to a highly conserved 5' untranslated region of an mRNA translationally regulated by polyamines.  相似文献   

3.
We recently reported purification, determination of the nucleotide sequence, and cloning of a 60-nucleotide RNA (I-RNA) from the yeast Saccharomyces cerevisiae which preferentially blocked cap-independent, internal ribosome entry site (IRES)-mediated translation programmed by the poliovirus (PV) 5' untranslated region (UTR). The I-RNA appeared to inhibit IRES-mediated translation by virtue of its ability to bind a 52-kDa polypeptide which interacts with the 5' UTR of viral RNA. We demonstrate here that the HeLa 52-kDa I-RNA-binding protein is immunologically identical to human La autoantigen. Moreover, I-RNA-mediated purified La protein. By using I-RNAs with defined deletions, we have identified sequences of I-RNA required for inhibition of internal initiation of translation. Two smaller fragments of I-RNA (16 and 25 nucleotides) inhibited PV UTR-mediated translation from both monocistronic and bicistronic RNAs. When transfected into HeLa cells, these derivatives of I-RNA inhibited translation of PV RNA. A comparison of protein binding by active and inactive I-RNA mutants demonstrates that in addition to the La protein, three other polypeptides with apparent molecular masses of 80, 70, and 37 kDa may influence the translation-inhibitory activity of I-RNA.  相似文献   

4.
We report the inhibition of encephalomyocarditis virus (EMCV) RNA translation in cell-free rabbit reticulocyte lysates by antisense oligonucleotides (13-17-base oligomers) complementary to (a) the viral 5' non-translated region, (b) the AUG start codon and (c) the coding sequence. Our results demonstrate that the extent of translation inhibition is dependent on the region where the complementary oligonucleotides bind. Non-complementary and 3'-non-translated-region-specific oligonucleotides had no effect on translation. A significant degree of translation inhibition was obtained with oligonucleotides complementary to the viral 5' non-translated region and AUG initiation codon. Digestion of the oligonucleotide:RNA hybrid by RNase H did not significantly increase translation inhibition in the case of 5'-non-translated-region-specific and initiator-AUG-specific oligonucleotides; in contrast, RNase H digestion was necessary for inhibition by the coding-region-specific oligonucleotide. We propose that (a) 5'-non-translated-region-specific oligonucleotides inhibit translation by affecting the 40S ribosome binding and/or passage to the AUG start codon, (b) AUG-specific oligonucleotides inhibit translation initiation by inhibiting the formation of an active 80S ribosome and (c) the coding-region-specific oligonucleotide does not prevent protein synthesis because the translating 80S ribosome can dislodge the oligonucleotide from the EMCV RNA template.  相似文献   

5.
6.
7.
Complementary DNAs (cDNA's) specific for various regions of the Moloney murine sarcoma virus (MSV) 124 RNA genome were prepared by cross-hybridization techniques. A cDNA specific for the first 1,000 nucleotides adjacent to the RNA 3' end (cDNA 3') was prepared and shown to also be complementary to the 3'-terminal 1,000 nucleotides of a related Moloney murine leukemia virus (MLV) genome. A cDNA complementary to the "MSV-specific" portion of the MSV 124 genome was prepared. This cDNA was shown not to anneal to Moloney MLV RNA and to anneal to a portion of the viral RNA of about 1,500 to 1,800 nucleotides in length, located 1,000 nucleotides from the 3' end of MSV RNA. A cDNA common to the genome of MSV and MLV was also obtained and shown to anneal to the 5'-terminal two-thirds, as well as to the 3'-terminal 1,000 nucleotides, of the MSV RNA genome. This cDNA also annealed to the RNA from MLV and mainly to the 5'-terminal half of the MLV genome. It is concluded that the 6-kilobase Moloney MSV 124 RNA genome has a sequence arrangement that includes (i) a 3' portion of about 1,000 nucleotides, which is also present at the 3' terminus of MLV; (ii) an MSV-specific region, not shared with MLV, which extends between 1,000 and 2,500 nucleotides from the 3' terminus; and (iii) a second "common" region, again shared with MLV, which extends from 2,500 nucleotides to the 5' terminus. This second common region appears to be located in the 5' half of the 10-kilobase MLV genome as well. Experiments in which a large excess of cold MLV cDNA was annealed to (3)H-labeled polyadenylic acid-containing fragments of MSV RNA gave results consistent with this arrangement of the MSV genome.  相似文献   

8.
9.
We show by sequence analysis of a 420-base-long region adjacent to the 3' polyadenylic acid of encephalomyocarditis viral RNA and by carboxy terminus analysis of protein E that the termination site of encephalomyocarditis virus polyprotein translation consists of two successive UAG codons located at positions 121 to 126 from the 3' polyadenylic acid.  相似文献   

10.
SARS coronavirus (SCoV) nonstructural protein (nsp) 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES) region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.  相似文献   

11.
12.
The complete nucleotide sequence of RNA1 of an Aschersleben isolate of barley mild mosaic virus (BaMMV) was determined. It consists of 7263 nucleotides (nt) excluding the 3' poly (A) tail. The 5' and 3' nontranslated regions (NTR) are 148 and 338 nt in length, respectively, and flank a single large open reading frame coding for a precursor polypeptide with a calculated molecular mass of 256 kDa. Sequence comparison revealed a 96% amino acid (aa) identity to RNA1 translation products of Japanese and French BaMMV isolates. Conserved nucleotide motifs in the 3' sense and 5' complementary sense NTR of the two genomic RNAs were identified that may represent the polymerase recognition sites. A range of constructs containing various parts of the coding region of the P3 nonstructural protein was prepared for expression in Escherichia coli . A short stretch of 35 aa in the C-proximal region of P3 appeared to be highly toxic to the bacterium.  相似文献   

13.
14.
S Forss  K Strebel  E Beck    H Schaller 《Nucleic acids research》1984,12(16):6587-6601
A continuous 7802 nucleotide sequence spanning the 94% of foot and mouth disease virus RNA between the 5'-proximal poly(C) tract and the 3'-terminal poly(A) was obtained from cloned cDNA, and the total size of the RNA genome was corrected to 8450 nucleotides. A long open reading frame was identified within this sequence starting about 1300 bases from the 5' end of the RNA genome and extending to a termination codon 92 bases from its polyadenylated 3' end. The protein sequence of 2332 amino acids deduced from this coding sequence was correlated with the 260 K FMDV polyprotein. Its processing sites and twelve mature viral proteins were inferred from protein data, available for some proteins, a predicted cleavage specificity of an FMDV encoded protease for Glu/Gly(Thr, Ser) linkages, and homologies to related proteins from poliovirus. In addition, a short unlinked reading frame of 92 codons has been identified by sequence homology to the polyprotein initiation signal and by in vitro translation studies.  相似文献   

15.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

16.
The nucleotide sequence of cowpea mosaic virus B RNA   总被引:22,自引:6,他引:16       下载免费PDF全文
The complete sequence of the bottom component RNA (B RNA) of cowpea mosaic virus (CPMV) has been determined. Restriction enzyme fragments of double-stranded cDNA were cloned in M13 and the sequence of the inserts was determined by a combination of enzymatic and chemical sequencing techniques. Additional sequence information was obtained by primed synthesis on first strand cDNA. The complete sequence deduced is 5889 nucleotides long excluding the 3' poly(A), and contains an open reading frame sufficient to code for a polypeptide of mol. wt. 207 760. The coding region is flanked by a 5' leader sequence of 206 nucleotides and a 3' non-coding region of 82 residues which does not contain a polyadenylation signal.  相似文献   

17.
Three major species of viral DNA have been observed in cells infected by retroviruses: a linear, double-stranded copy of a subunit of viral RNA; closed circular DNA; and proviral DNA inserted covalently into the genome of the host cell. We have studied the structures of the unintegrated forms of avian sarcoma virus (ASA) DNA using agarose gel electrophoresis in conjunction with restriction endonucleases and molecular hybridization techniques. The linear duplex DNA is approximately the same length as a subunit of viral RNA (approximately 10 kb) and it bears natural repeats of approximately 300 nucleotides at its termini. The repeats are composed of sequences derived from both the 3' and 5' termini of viral RNA in a manner suggesting that the viral DNA polymerase is transferred twice between templates. Thus the first end begins with a sequence from the 5' terminus of viral RNA and is permuted by about 100 nucleotides with respect to the 3' terminus of viral RNA; the linear DNA terminates with a sequence of about 200 nucleotides derived from the 3' end of viral RNA. We represent this structure, synthesized from right to left, as 3'5'-----3'5'. Two closed circular species of approximately monomeric size have been identified. The less abundant species contain all the sequences identified in linear DNA, including two copies in tandem of the 300 nucleotide 3'5' repeat. The major species lacks about 300 base pairs (bp) mapped to the region of the repeated sequence; thus it presumably contains only a single copy of that sequence. The strategies used to determine these structures involved the assignment of over 20 cleavage sites for restriction endonucleases on the physical maps of ASV DNA. Several strains of ASV were compared with respect to these sites, and the sites have been located in relation to deletions frequently observed in the env and src genes of ASV.  相似文献   

18.
19.
Molecular cloning of bovine beta-lactoglobulin cDNA   总被引:2,自引:0,他引:2  
A cDNA library from bovine mammary gland mRNA was constructed in pBR322 and screened by hybrid-selected translation and immunoscreening. Several beta-lactoglobulin clones were identified and sequenced. All clones contained cDNA fragments corresponding to the 3' region of beta-lactoglobulin mRNA. The 3' non-translated region of beta-lactoglobulin mRNA consists of 187 nucleotides; the polyadenylation signal AATAAA occurs 17 nucleotides before the poly(A) tail. The amino-acid sequence predicted from the 3' coding region corresponds completely to the previously determined amino-acid sequence of beta-lactoglobulin.  相似文献   

20.
S Perri  D Ganem 《Journal of virology》1996,70(10):6803-6809
The terminal regions of hepatitis B virus (HBV) pregenomic RNA (pgRNA) harbors sites governing many essential functions in the viral life cycle, including polyadenylation, translation, RNA encapsidation, and DNA synthesis. We have examined the binding of host proteins to a 170-nucleotide region from the 5' end of HBV pgRNA; a large portion of this region is duplicated at the 3' end of this terminally redundant RNA. By UV cross-linking labeled RNA to HepG2 cell extracts, we have identified a 65-kDa factor (p65) of nuclear origin which can specifically bind to this region. Two discrete binding sites were identified within this region; in vitro cross-competition experiments suggest that the same factor binds to both elements. One binding site (termed UBS) overlaps a portion of the highly conserved stem-loop structure (epsilon), while the other site (termed DBS) maps 35 nucleotides downstream of the hexanucleotide polyadenylation sequence. Both binding sites are highly pyrimidine rich and map to regions previously found to be important in the regulation of viral polyadenylation. However, functional analysis of mutant binding sites in vivo indicates that p65 is not involved in the polyadenylation of HBV pgRNA. Potential roles for the factor in viral replication in vivo are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号