首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylcholine Synthesis by Adult Bovine Adrenal Chromaffin Cell Cultures   总被引:1,自引:1,他引:0  
Adrenal chromaffin cells normally synthesize and release catecholamines. In the present study, [3H]acetylcholine synthesis and another characteristic of cholinergic neurons, [3H]choline uptake, were studied in cultures of adult bovine adrenal chromaffin cells. Chromaffin cell cultures took up [3H]choline from the medium and acetylated the [3H]choline to form [3H]acetylcholine. The rate of [3H]acetylcholine synthesis increased after 19 days in culture and continued to increase up to 28 days in culture. [3H]Acetylcholine synthesis could be increased by stimulating the cells with a depolarizing concentration of K+. The ability for K+ to stimulate synthesis of [3H]acetylcholine developed only after 28 days in culture. [3H]Choline was taken up by the cultures through a single mechanism with a high (to intermediate) affinity for choline. [3H]Choline uptake was enhanced by Na+ omission in day-14 cultures, but was at least partially Na+-dependent in day-29 cultures. Hemicholinium-3 (IC50 less than 10 muM) inhibited [3H]choline uptake into chromaffin cell cultures. It is concluded that bovine adrenal chromaffin cells, maintained in culture, are able to exhibit cholinergic properties and this capacity is retained even by the mature adult cell.  相似文献   

2.
Dissociated rat septal nucleus cells cultured in defined medium exhibited twofold increases in the maximal rates of sodium-dependent, high-affinity choline uptake and acetylcholine formation when grown in the presence of phosphoethanolamine. The effect was concentration-dependent (EC50 = 15 microM) and appeared to be associated with in vitro maturation of cholinergic neurons rather than with enhanced survival. Choline acetyltransferase, acetylcholinesterase, and choline kinase activities were unaffected by this treatment. The effect of phosphoethanolamine was specific for cholinergic neurons, because treatment with this compound did not alter the kinetic constants for high-affinity neuronal uptake of gamma-aminobutyric acid or dopamine. The action appeared to be mediated primarily through activation of the sodium-dependent, high-affinity transport mechanism for choline as opposed to alterations in the storage and release of acetylcholine.  相似文献   

3.
4.
Abstract: As in intact tissues, choline influx into synaptosomes is enhanced after a period of depolarization induced release of acetylcholine. The activation of uptake is dependent on the presence of Ca2+ and inhibited by high Mg2+ concentrations in the medium during depolarization. Choline transport in erythrocytes was not activated by prior treatment with potassium. The permeability constant of the synaptosome membrane to choline was found to be 2.7 × 10?8 cm·s?1 and to acetylcholine 1.8 ′ 10?8 cm·s?1. Choline influx has been studied after pre-loading synaptosomes with choline. Different radiolabels were used to measure efflux of preloaded choline and influx simultaneously. Isotopic dilution in flux studies was estimated and corrected for. Influx was stimulated by high internal concentrations of choline, and efflux similarly stimulated by high outside concentrations of choline. The maximal influx and efflux at saturating opposite concentrations of choline were equal with a value of about 500 pmol·min?1 per mg synaptosomal protein. A reciprocating carrier would explain the equality of the maximal influx and efflux. Acetylcholine competes with choline for binding to the carrier but is itself hardly transported. Increased acetylcholine concentrations were shown to inhibit both choline influx and efflux from the trans position. Raising intrasynaptosomal acetylcholine concentrations by pre-loading abolished the stimulation of influx by prior depolarization. It is proposed that high concentrations of acetylcholine immobilize the carrier on the inside of the synaptic membrane. The stimulation of choline influx consequent upon depolarization is caused by release of ACh which results in relief of this immobilisation. The enhanced supply of choline achieved by this mechanism is likely to be important in maintaining stores of the acetylcholine in vivo.  相似文献   

5.
Abstract— Choline acetyltransferase catalyzes the formation of acetylcholine from choline and acetyl-CoA in cholin-ergic neurons. The present study examined conditions for modulation of kinase-mediated phosphorylation of this enzyme. By using a monospecific polyclonal rabbit anti-human choline acetyltransferase antibody to immunoprecipi-tate cytosolic and membrane-associated subcellular pools of enzyme from rat hippocampal synaptosomes, we determined that only the cytosolic fraction of the enzyme (67,000 ± 730 daltons) was phosphorylated under basal, unstimulated conditions. The quantity of this endogenous phosphoprotein was dependent, in part, upon the level of intracellular calcium, with 32Pi incorporation into the enzyme in nerve terminals incubated in nominally calcium-free medium only 43 ± 7% of control. The corresponding enzymatic activity of cytosolic choline acetyltransferase did not appear to be altered by lowered cytosolic calcium, whereas membrane-associated choline acetyltransferase activity was decreased to 58 ± 11 % of control. Depolarization of synaptosomes with 50 μ M veratridine neither altered the extent of phosphorylation or specific activity of cytosolic choline acetyltransferase, nor induced detectable phosphorylation of membrane-associated choline acetyltransferase, although the specific activity of the membrane-associated enzyme was increased to 132 ± 5% of control. In summary, phosphorylation of choline acetyltransferase does not appear to regulate cholinergic neurotransmission by a direct action on catalytic activity of the enzyme.  相似文献   

6.
The choline required for synthesis of acetylcholine is derived exogenously by Aplysia ganglia. Under physiological conditions choline was taken up primarlily by neuropile and nerves and not by cholinergic cell bodies. In addition, compared with their contents of choline acetyltransferase, those components of nervous tissue which contain nerve terminals and axons synthesized acetylcholine far more efficiently. Choline was accumulated by high and low affinity uptake processes; the high affinity process appeared to be characteristic of cholinergic nuerons (Swartz, J. H., M. L. Eisenstadt, and H. Cedar.1975. J. Gen. Physiol. 65:255). The two uptake processes were similarly affected by temperature with a Q10 of 2.8. Both were dependent on a variety of ions in a complicated manner. High affinity uptake seemed to be more dependent on Na+, showed greater inhibition by ouabain, and was selectively inhibited by oxotremorine. We found that the functional state of neurons did not alter uptake of radioactive choline by either process, nor did it change the conversion to radioactive acetylcholine.  相似文献   

7.
8.
We examined the effects of two drugs, AH5183 and cetiedil, demonstrated to be potent inhibitors of acetylcholine (ACh) transport by isolated synaptic vesicles on cholinergic functions in Torpedo synaptosomes. AH5183 exhibited a high specificity toward vesicular ACh transport, whereas cetiedil was shown to inhibit both high-affinity choline uptake and vesicular ACh transport. Choline acetyltransferase was not affected by either drug. High external choline concentrations permitted us to overcome cetiedil inhibition of high-affinity choline transport, and thus synthesis of [14C]ACh in treated preparations was similar to that in controls. We then tested evoked ACh release in drug-treated synaptosomes under conditions where ACh translocation into the vesicles was blocked. We observed that ACh release was impaired only in cetiedil-treated preparations; synaptosomes treated with AH5183 behaved like the controls. Thus, this comparative study on isolated nerve endings allowed us to dissociate two steps in drug action: upstream, where both AH5183 and cetiedil are efficient blockers of the vesicular ACh translocation, and downstream, where only cetiedil is able to block the ACh release process.  相似文献   

9.
Abstract: The activity of choline acetyltransferase was used as an index of cholinergic structures in regions of rat brain. The activities of ATP citrate lyase and choline kinase correlated poorly with cholinergic activity in whole tissue fractions, contrasting with the good correlation between acetylcholinesterase and choline acetyltransferase. Choline acetyltransferase was preferentially localised in synaptosomes prepared from regions of high (striatum) or intermediate (cortex, medulla oblongata/pons) cholinergic activity. In general, this was not true for either choline kinase or ATP citrate lyase.  相似文献   

10.
Choline acetyltransferase and acetylcholinesterase activities were measured in samples taken at 7-micron increments through the inner plexiform layer of rat retina. These enzyme activities were not uniformly distributed through the depth of the inner plexiform layer. Peaks of choline acetyltransferase activity occurred at about one-third and peaks of acetylcholinesterase activity at about one-fifth of the depth into the inner plexiform layer from either side. The positions of the two peaks of choline acetyltransferase activity most likely correspond to the locations of processes from cholinergic amacrine somata in the inner nuclear layer, which spread in sublamina a, and processes from cholinergic amacrine somata "displaced" in the ganglion cell layer which spread in sublamina b of the inner plexiform layer. The peaks of acetylcholinesterase activity may in addition correspond to the processes of cholinoceptive amacrine and ganglion cells. The magnitudes of choline acetyltransferase and acetylcholinesterase activities are as high as found anywhere in rat brain, emphasizing the important role of cholinergic mechanisms in visual processing through the rat inner plexiform layer.  相似文献   

11.
Highly cholinergic synaptosomes from the optic lobes of Sepia officinalis retain their ability to concentrate K+ and extrude Na+ and to synthesise acetylcholien in vitro. Choline uptake is hemicholinium-3 and Na+ sensitive but is not obligatorily coupled to choline metabolism, or an energy supply as shown by the action of metabolic and ion pump inhibitors. The influx and efflux and/or steady-state distributions of choline in the presence of Na+, Li+, Rb+, Cs+ and mannitol were studied. The influx studies at different cis-choline concentrations revealed two systems for choline influx with different monovalent cation sensitivity and suggested a 1 : 1 interaction of choline with both mechanisms. Choline efflux was stimulated by trans-choline. Calculations of the internal/external concentration ratio expected if choline transport were coupled to the Na+ gradient gave a maximal value of about 102. A secondary active transport of choline, where Na+ is the driver solute provides an explanation for the cation sensitivity of the mechanism as well as for the method of coupling of choline transport to the varying demands of the nervous system for acetylcholine.  相似文献   

12.
13.
14.
A Synaptosomal Preparation from the Guinea Pig Ileum Myenteric Plexus   总被引:6,自引:4,他引:2  
Abstract: Our interest in investigating the presynaptic modulation of acetylcholine release led to the development of a synaptosomal preparation from the guinea pig ileum myenteric plexus-longitudinal muscle. A crude synaptosomal fraction (P2) was obtained by homogenization and differential centrifugation. The preparation exhibited a specific uptake system for choline and for nor-adrenaline (NA), but not for 5-hydroxytryptamine (5-HT). Synaptosomes were isolated from this P2 fraction by an isoosmotic density gradient prepared from sucrose and metrizamide. The resultant synaptosomal fraction was enriched about sevenfold in both choline uptake and in choline acetyltransferase (ChAT). Choline was transported by a high-affinity system with a Km of 6.5 × 10−7 M and a Vmax of 41 pmol/mg protein/min. Electron microscopy confirmed the synaptosomal nature of the gradient fraction. Some synaptosomal profiles contained only small, translucent vesicles whereas others also contained large (approx. 100 nm diameter) electron-opaque vesicles. The crude synaptosomal fraction synthesized acetylcholine (ACh) from exogenous choline and it released the synthesized ACh in a calcium-dependent manner.  相似文献   

15.
Abstract— Acetylcholine synthesis in homogenates of human intercostal muscle was measured by a radiochemical method. Choline acetyltransferase activity in control muscle was about 20 nmol.g−1.h−1. The enzyme was found only in the endplate area of the muscle. At high substrate concentrations its activity was overshadowed by the acetylcholine synthesizing activity of a different enzyme not saturated by 10 m m -choline. The nonspecific enzyme was present at and away from the endplate area. Choline acetyltransferase in parasternal samples of intercostal muscle from myasthenia gravis patients was about 2.5 times higher than in samples, taken from a more lateral location, of control patients, but the K m for choline was not altered (0.24 m m ). It is suggested that in myasthenia gravis the shortage of acetylcholine receptors is partially compensated for by increased synthesis, storage, and release of the transmitter.  相似文献   

16.
Cholinergic nerve terminals were affinity purified from rat caudate nucleus. These terminals possessed both high- (KT = 2.7 microM) and low- (KT = 58 microM) affinity uptake mechanisms for exogenous [3H]choline. The proportion of [3H]choline acetylated was reduced from 75 to 30% under conditions of anoxia and hypoglycaemia, whereas the phosphorylation of choline increased from 4 to 52%. Choline phosphorylation was also increased when the terminals were preloaded with choline. The affinity-purified terminals were shown to release acetylcholine in a Ca2+-dependent manner on depolarization. The relationship between choline acetylation and phosphorylation in the cholinergic nerve terminal is discussed.  相似文献   

17.
The Role of Chloride in Acetylcholine Metabolism   总被引:1,自引:1,他引:0  
Abstract: The chloride dependence of acetylcholine (ACh) synthesis and release and of choline uptake was studied in synaptosomal preparations from rat brain. The substitution of propionate for chloride, in the presence of 35 m m -potassium, lowered the ACh content of the synaptosomes. However, in the presence of 5 m m -potassium, the ACh level in synaptosomes was reduced, but significantly less so. Propionate had no effect on choline acetyltransferase (EC 2.3.1.6) activity when measured in a standard chloride-containing medium. In the presence of propionate, the spontaneous release of ACh was unchanged, but potassium-stimulated release of ACh was markedly reduced as compared with a chloride-containing medium. The synthesis of ACh, as measured by the net increase in the amount of ACh in the synaptosomes and that released to the medium, was reduced with propionate at 5 m m -potassium and was totally inhibited when the potassium concentration was increased to 35 m m . Choline uptake studies revealed that with propionate only a low-affinity component of the choline transport system existed. Further, the V max was markedly reduced when the potassium concentration was increased to 35 m m . The results suggest that under certain conditions choline transported by a low-affinity system might provide a substantial source of choline for ACh synthesis.  相似文献   

18.
The neuroblastoma X glioma hybrid clone NG108-15 is able to release acetylcholine upon depolarization and form cholinergic neuromuscular synapses in culture. Normal functioning of cholinergic synapses is thought to be dependent on the ability of a neuron to take up extracellular choline, since neurons are unable to synthesize choline de novo. For these two reasons it became important to characterize the choline uptake system of NG108-15 cells. The uptake system appears to bear little if any resemblance to the Na+-dependent high-affinity choline uptake system normally associated with cholinergic neurons. Although the cells appear to possess both high- and low- affinity choline uptake systems, neither system is dependent on Na+ and uptake actually is increased about 60% by the substitution of sucrose for NaCl. Acetylcholine synthesis also is not dependent on Na+, since sucrose, substituted for NaCl, also stimulates acetylcholine synthesis. Changes in the concentrations of the other ions in the uptake medium have little effect on uptake, with the exception that elevated Ca2+ or Mg2+ reverses the stimulation of choline uptake produced by substitution of sucrose for NaCl. Choline uptake is inhibited by hemicholinium-3, but only at high concentrations of the drug (IC50= 30–80 μm ). The metabolic poisons cyanide and iodoacetate inhibit uptake by only 30-40%. Growth of the cells in N6,O2′ dibutyryladenosine-3′,5′-cyclic monoposphate, which promotes functional and morphological differentiation of the cells, decreased slightly the total amount of choline taken up but had no additional effect on the uptake system. Thus, it appears that NG108-15 cells are capable of forming functional cholinergic synapses with muscle cells even though the neuroblastoma does not possess the high-affinity choline uptake system normally associated with cholinergic neurons.  相似文献   

19.
Abstract: In the human neuroblastoma cell line LA-N-2, recombinant rat ciliary neurotrophic factor (CNTF) induced neurite growth and cholinergic differentiation that were both half-maximally saturated at <100 p M of the neurokine, but was not required for cell survival in serum-free conditions over a 13-day period. CNTF markedly stimulated choline acetyltransferase activity and acetylcholine synthesis, whereas high-affinity choline transport was only slightly enhanced and acetylcholinesterase activity was unchanged. Leukemia inhibitory factor had effects identical to CNTF on neurite growth and choline acetyltransferase activity, but interleukin 6 had no effect. Radioiodinated CNTF binding and affinity cross-linking studies were consistent with tripartite receptor activation as a mediator of the observed biological effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号