首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
Among the interactions that stabilize the native state of proteins, the role of electrostatic interactions has been difficult to quantify precisely. Surface salt bridges or ion pairs between acidic and basic side chains have only a modest stabilizing effect on the stability of helical peptides or proteins: estimates are roughly 0.5 kcal/mol or less. On the other hand, theoretical arguments and the occurrence of salt bridge networks in thermophilic proteins suggest that multiple salt bridges may exert a stronger stabilizing effect. We show here that triads of charged side chains, Arg(+)-Glu(-)-Arg(+) spaced at i,i+4 or i,i+3 intervals in a helical peptide stabilize alpha helix by more than the additive contribution of two single salt bridges. The free energy of the triad is more than 1 kcal/mol in excess of the sum of the individual pairs, measured in low salt concentration (10 mM). The effect of spacing the three groups is severe; placing the charges at i,i+4 or i,i+3 sites has a strong effect on stability relative to single bridges; other combinations are weaker. A conservative calculation suggests that interactions of this kind between salt bridges can account for much of the stabilization of certain thermophilic proteins.  相似文献   

2.
Helix folding simulations with various initial conformations.   总被引:3,自引:1,他引:2       下载免费PDF全文
S S Sung 《Biophysical journal》1994,66(6):1796-1803
Using a solvent-referenced energy calculation, a 16-residue peptide with alanine side chains folded into predominantly alpha-helical conformations during constant temperature (274 K) simulations. From different initial conformations, helical conformations were reached and the multiple energy minima did not become a serious problem. Under the same conditions, the simulation did not indiscriminately fold a sequence such as polyglycine into stable helices. Interesting observations from the simulations relate to the folding mechanism. The electrostatic interactions between the successive amides favored extended conformations (or beta strands) and caused energy barriers to helix folding. beta-bends were observed as intermediates during helix nucleation. The helix propagation toward the C-terminus seemed faster than that toward the N-terminus. In helical conformations, hydrogen bond oscillation between the i,i+ 4 and the i,i+3 patterns was observed. The i,i+3 hydrogen bonds occurred more frequently during helix propagation and deformation near both ends of the helical segment.  相似文献   

3.
Sodium dodecyl sulfate (SDS) has consistently been shown to induce secondary structure, particularly alpha-helices, in polypeptides, and is commonly used to model membrane and other hydrophobic environments. However, the precise mechanism by which SDS induces these conformational changes remains unclear. To examine the role of electrostatic interactions in this mechanism, we have designed two hydrophilic, charged amphipathic alpha-helical peptides, one basic (QAPAYKKAAKKLAES) and the other acidic (QAPAYEEAAEELAKS), and their structures were studied by CD and NMR. The design of the peptides is based on the sequence of the segment of residues 56-70 of human platelet factor 4 [PF4(56-70), QAPLYKKIIKKLLES]. Both peptides were unstructured in water, and in the presence of neutral, zwitterionic, or cationic detergents. However, in SDS at neutral pH, the basic peptide folded into an alpha-helix. By contrast, the pH needed to be lowered to 1.8 before alpha-helix formation was observed for the acidic peptide. Strong, attractive electrostatic interactions, between the anionic groups of SDS and the cationic groups of the lysines, appeared to be necessary to initiate the folding of the basic peptide. NMR analysis showed that the basic peptide was fully embedded in SDS-peptide micelles, and that its three-dimensional alpha-helical structure could be superimposed on that of the native structure of PF4(56-70). These results enabled us to propose a working model of the basic peptide-SDS complex, and a mechanism for SDS-induced alpha-helical folding. This study demonstrates that, while the folding of peptides is mostly driven by hydrophobic effects, electrostatic interactions play a significant role in the formation and the stabilization of SDS-induced structure.  相似文献   

4.
We test molecular level hypotheses for the high thermal stability of alpha-helical conformations of alanine-based peptides by performing detailed atomistic simulations of a 20-amino-acid peptide with explicit treatment of water. To assess the contribution of large side chains to alpha-helix stability through backbone desolvation and salt-bridge formation, we simulate the alanine-rich peptide, Ac-YAEAAKAAEAAKAAEAAKAF-Nme, referred to as the EK peptide, that has three pairs of "i, i + 3" glutamic acid(-) and lysine(+) substitutions. Efficient configurational sampling of the EK peptide over a wide temperature range enabled by the replica exchange molecular dynamics technique allows characterization of the stability of alpha-helix with respect to heat-induced unfolding. We find that near ambient temperatures, the EK peptide predominately samples alpha-helical configurations with 80% fractional helicity at 300 K. The helix melts over a broad range of temperatures with melting temperature, T(m), equal to 350 K, that is significantly higher than the T(m) of a 21-residue polyalanine peptide, A(21). Salt-bridges between oppositely charged Glu(-) and Lys(+) side chains can, in principle, provide thermal stability to alpha-helical conformers. For the specific EK peptide sequence, we observe infrequent formation of Glu-Lys salt-bridges (with approximately 10-20% probability) and therefore we conclude that salt-bridge formation does not contribute significantly to the EK peptide's helical stability. However, lysine side chains are found to shield specific "i, i + 4" backbone hydrogen bonds from water, indicating that large side-chain substituents can play an important role in stabilizing alpha-helical configurations of short peptides in aqueous solution through mediation of water access to backbone hydrogen bonds. These observations have implications on molecular engineering of peptides and biomolecules in the design of their thermostable variants where the shielding mechanism can act in concert with other factors such as salt-bridge formation, thereby increasing thermal stability considerably.  相似文献   

5.
Interactions between hydrophobic side chains within alpha-helices.   总被引:3,自引:3,他引:0       下载免费PDF全文
The thermodynamic basis of helix stability in peptides and proteins is a topic of considerable interest. Accordingly, we have computed the interactions between side chains of all hydrophobic residue pairs and selected triples in a model helix, using Boltzmann-weighted exhaustive modeling. Specifically, all possible pairs from the set Ala, Cys, His, Ile, Leu, Met, Phe, Trp, Tyr, and Val were modeled at spacings of (i, i + 2), (i, i + 3), and (i, i + 4) in the central turn of a model poly-alanyl alpha-helix. Significant interactions--both stabilizing and destabilizing-- were found to occur at spacings of (i, i + 3) and (i, i + 4), particularly in side chains with rings (i.e., Phe, Tyr, Trp, and His). In addition, modeling of leucine triples in a helix showed that the free energy can exceed the sum of pairwise interactions in certain cases. Our calculated interaction values both rationalize recent experimental data and provide previously unavailable estimates of the constituent energies and entropies of interaction.  相似文献   

6.
The destabilizing effect of electrostatic repulsions on protein stability has been studied by using synthetic two-stranded alpha-helical coiled-coils as a model system. The native coiled-coil consists of two identical 35-residue polypeptide chains with a heptad repeat QgVaGbAcLdQeKf and a Cys residue at position 2 to allow formation of an interchain disulfide bridge. This peptide, designed to contain no intrahelical or interhelical electrostatic interactions, forms a stable coiled-coil structure at 20 degrees C in benign medium (50 mM KCl, 25 mM PO4, pH 7) with a [urea]1/2 value of 6.1 M. Four mutant coiled-coils were designed to contain one or two Glu substitutions for Gln per polypeptide chain. The resulting coiled-coils contained potential i to i' + 5 Glu-Glu interchain repulsions (denoted as peptide E2(15,20)), i to i' + 2 Glu-Glu interchain repulsions (denoted E2(20,22)), or no interchain ionic interactions (denoted E2(13,22) and E1(20)). The stabilities of the coiled-coils were determined by measuring the ellipticities at 222 nm as a function of urea or guanidine hydrochloride concentration at 20 degrees C in the presence and absence of an interchain disulfide bridge. At pH 7, in the presence of urea, the stabilities of E2(13,22) and E2(20,22) were identical suggesting that the potential i to i' + 2 interchain Glu-Glu repulsion in the E2(20,22) coiled-coil does not occur. In contrast, the mutant E2(15,20) is substantially less stable than E2(13,22) or E2(15,20) by 0.9 kcal/mol due to the presence of two i to i' + 5 interchain Glu-Glu repulsions, which destabilize the coiled-coil by 0.45 kcal/mol each. At pH 3 the coiled-coils were found to increase in stability as the number of Glu substitutions were increased. This, combined with reversed-phase HPLC results at pH 7 and pH 2, supports the conclusion that the protonated Glu side chains present at low pH are significantly more hydrophobic than Gln side chains which are in turn more hydrophobic than the ionized Glu side chains present at neutral pH. The protonated Glu residues increase the hydrophobicity of the coiled-coil interface leading to higher coiled-coil stability. The guanidine hydrochloride results at pH 7 show similar stabilities between the native and mutant coiled-coils indicating that guanidine hydrochloride masks electrostatic repulsions due to its ionic nature and that Glu and Gln in the e and g positions of the heptad repeat have very similar effects on coiled-coil stability in the presence of GdnHCl.  相似文献   

7.
Based on theoretical arguments, 2,6,3',5'-substituted biphenyl analogues are proposed as protein alpha-helix mimetics superimposing the side chains of the residues i, i+1, i+3 and i+4. Knowing that many protein-protein interactions of therapeutical relevance involve alpha-helix contacts, the communication outlines how this novel category of scaffolds might potentially open access to such targets.  相似文献   

8.
We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position.  相似文献   

9.
Cui M  Shen J  Briggs JM  Luo X  Tan X  Jiang H  Chen K  Ji R 《Biophysical journal》2001,80(4):1659-1669
The association of the scorpion toxin Lq2 and a potassium ion (K(+)) channel has been studied using the Brownian dynamics (BD) simulation method. All of the 22 available structures of Lq2 in the Brookhaven Protein Data Bank (PDB) determined by NMR were considered during the simulation, which indicated that the conformation of Lq2 affects the binding between the two proteins significantly. Among the 22 structures of Lq2, only 4 structures dock in the binding site of the K(+) channel with a high probability and favorable electrostatic interactions. From the 4 candidates of the Lq2-K(+) channel binding models, we identified a good three-dimensional model of Lq2-K(+) channel complex through triplet contact analysis, electrostatic interaction energy estimation by BD simulation and structural refinement by molecular mechanics. Lq2 locates around the extracellular mouth of the K(+) channel and contacts the K(+) channel using its beta-sheet rather than its alpha-helix. Lys27, a conserved amino acid in the scorpion toxins, plugs the pore of the K(+) channel and forms three hydrogen bonds with the conserved residues Tyr78(A-C) and two hydrophobic contacts with Gly79 of the K(+) channel. In addition, eight hydrogen-bonds are formed between residues Arg25, Cys28, Lys31, Arg34 and Tyr36 of Lq2 and residues Pro55, Tyr78, Gly79, Asp80, and Tyr82 of K(+) channel. Many of them are formed by side chains of residues of Lq2 and backbone atoms of the K(+) channel. Thirteen hydrophobic contacts exist between residues Met29, Asn30, Lys31 and Tyr36 of Lq2 and residues Pro55, Ala58, Gly79, Asp80 and Tyr82 of the K(+) channel. These favorable interactions stabilize the association between the two proteins. These observations are in good agreement with the experimental results and can explain the binding phenomena between scorpion toxins and K(+) channels at the level of molecular structure. The consistency between the BD simulation and the experimental data indicates that our three-dimensional model of Lq2-K(+) channel complex is reasonable and can be used in further biological studies such as rational design of blocking agents of K(+) channels and mutagenesis in both toxins and K(+) channels.  相似文献   

10.
The chemical shifts of specific (13)C and (15)N labels distributed throughout KIAGKIA-KIAGKIA-KIAGKIA (K3), an amphiphilic 21-residue antimicrobial peptide, prove that the peptide is in an all alpha-helical conformation in the bilayers of multilamellar vesicles (MLVs) containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol (1:1). Rotational-echo double-resonance (REDOR) (13)C[(31)P] and (15)N[(31)P] experiments on the same labeled MLVs show that on partitioning into the bilayer, the peptide chains remain in contact with lipid headgroups. The amphipathic lysine side chains of K3 in particular appear to play a key role in the electrostatic interactions with the acidic lipid headgroups. In addition to the extensive peptide-headgroup contact, (13)C[(19)F] REDOR experiments on MLVs containing specifically (19)F-labeled lipid tails suggest that a portion of the peptide is surrounded by a large number of lipid acyl chains. Complementary (31)P[(19)F] REDOR experiments on these MLVs show an enhanced headgroup-lipid tail contact resulting from the presence of K3. Despite these distortions, static (31)P NMR lineshapes indicate that the lamellar structure of the membrane is preserved.  相似文献   

11.
To determine whether the alpha-helix in the B3 immunoglobulin binding domain of protein G from group G Streptococcus has conformational stability as an isolated fragment, we carried out a CD and NMR study of the 16-residue peptide in solution corresponding to this alpha-helix. Based on two-dimensional H-NMR spectra recorded at three different temperatures (283, 305, and 313 K), it was found that this peptide is mostly unstructured in water at these temperatures. Weak signals corresponding to i,i+3 or i,i+4 interactions, which are characteristic of formation of turn-like structures, were observed in the ROE spectra at all temperatures. The absence of a stable three-dimensional structure of the investigated peptide supports an earlier study (Blanco and Serrano, Eur J Biochem 1995, 230, 634-649) of a possible mechanism for folding of other (B1 and B2) immunoglobulin binding domains of Protein G. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 1032-1044, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

12.
I L Karle 《Biopolymers》1989,28(1):1-14
Preferred conformation and types of molecular folding are some of the topics that can be addressed by structure analysis using x-ray diffraction of single crystals. The conformations of small linear peptide molecules with 2-6 residues are affected by polarity of solvent, presence of water molecules, hydrogen bonding with neighboring molecules, and other packing forces. Larger peptides, both cyclic and linear, have many intramolecular hydrogen bonds, the effect of which outweighs any intermolecular attractions. Numerous polymorphs of decapeptides grown from a variety of solvents, with different cocrystallized solvents, show a constant conformation for each peptide. Large conformational changes occur, however, upon complexation with metal ions. A new form of free valinomycin grown from DMSO exhibits near three-fold symmetry with only three intramolecular hydrogen bonds. The peptide is in the form of a shallow bowl with a hydrophobic exterior. Near the bottom of the interior of the bowl are three carbonyl oxygens, spaced and directed so that they are in position to form three ligands to a K+, e.g., complexation can be completed by the three lobes containing the beta-bends closing over and encapsulating the K+ ion. In another example, free antamanide and the biologically inactive perhydro analogue, in which four phenyl groups become cyclic hexyl groups, have essentially the same folding of backbone and side chains. The conformation changes drastically upon complexation with Li+ or Na+. However, the metal ion complex of natural antamanide has a hydrophobic globlar form whereas the metal ion complex of the inactive perhydro analogue has a polar band around the middle. The structure results indicate that the antamanide molecule is in a complexed form during its biological activity. Single crystal x-ray diffraction structure analyses have identified the manner in which water molecules are essential to creating minipolar areas on apolar helices. Completely apolar peptides, such as membrane-active peptides, can acquire amphiphilic character by insertion of a water molecule into the helical backbone of Boc-Aib-Ala-Leu-Aib-Ala-Leu-Aib-Ala-Leu-Aib-OMe, for example. The C-terminal half assumes an alpha-helix conformation, whereas the N-terminal half is distorted by an insertion of a water molecule W(1) between N(Ala5) and O(Ala2), forming hydrogen bonds N(5)H...W(1) and W(1)...O(2). The distortion of the helix exposes C = O(Aib1) and C = O(Aib4) to the outside environment with the consequence of attracting additional water molecules. The leucyl side chains are on the other side of the molecule. Thus a helix with an apolar sequence can mimic an amphiphilic helix.  相似文献   

13.
Salmon calcitonin S-sulfonated analog (abbreviated as [S-SO(3)(-)]rsCT) was prepared by introducing two sulfonic groups into the side chains of Cys1 and Cys7 of recombinant salmon calcitonin. The hypocalcemic potency of this open-chain analog is 5500IU/mg, which is about 30% higher than that (4500IU/mg) of the wild type. The solution conformation of [S-SO(3)(-)]rsCT was studied in aqueous trifluoroethanol solution by CD, 2D-NMR spectroscopy, and distance geometry calculations. In the mixture of 60% TFE and 40% water, the peptide assumes an amphipathic alpha-helix in the region of residues 4-22, which is one turn longer than that of the native sCT. The structural feature analysis of the peptide revealed the presence of hydrophobic surface composed of five hydrophobic side chains of residues Leu4, Leu9, Leu12, Leu16, and Leu19, and a network of salt-bridges that consisted of a tetrad of oppositely charged side chains (Cys7-SO(3)(-)-Lys11(+)-Glu15(-)-Lys18(+)). The multiple salt bridges resulted in the stabilization of the longer amphipathic alpha-helix. Meanwhile, the higher hypocalcemic potency of the peptide could be attributed to the array of hydrophobic side chains of five leucine residues of the amphipathic alpha-helix.  相似文献   

14.
An increasing number of experimental and theoretical studies have demonstrated the importance of the 3(10)-helix/ alpha-helix/coil equilibrium for the structure and folding of peptides and proteins. One way to perturb this equilibrium is to introduce side-chain interactions that stabilize or destabilize one helix. For example, an attractive i, i + 4 interaction, present only in the alpha-helix, will favor the alpha-helix over 3(10), while an i, i + 4 repulsion will favor the 3(10)-helix over alpha. To quantify the 3(10)/alpha/coil equilibrium, it is essential to use a helix/coil theory that considers the stability of every possible conformation of a peptide. We have previously developed models for the 3(10)-helix/coil and 3(10)-helix/alpha-helix/ coil equilibria. Here we extend this work by adding i, i + 3 and i, i + 4 side-chain interaction energies to the models. The theory is based on classifying residues into alpha-helical, 3(10)-helical, or nonhelical (coil) conformations. Statistical weights are assigned to residues in a helical conformation with an associated helical hydrogen bond, a helical conformation with no hydrogen bond, an N-cap position, a C-cap position, or the reference coil conformation plus i, i + 3 and i, i + 4 side-chain interactions. This work may provide a framework for quantitatively rationalizing experimental work on isolated 3(10)-helices and mixed 3(10)-/alpha-helices and for predicting the locations and stabilities of these structures in peptides and proteins. We conclude that strong i, i + 4 side-chain interactions favor alpha-helix formation, while the 3(10)-helix population is maximized when weaker i, i + 4 side-chain interactions are present.  相似文献   

15.
In an attempt to characterize the early folding events in bovine beta-lactoglobulin (BLG), a set of peptides, covering the flexible N-terminal region and the stable C-terminus beta-core, was synthesized and analyzed by circular dichroism and by nuclear magnetic resonance in water, trifluoroethanol (TFE), and sodium dodecyl sulfate (SDS) below and above the critical micellar concentration. The role of local and long-range hydrophobic interactions in guiding the folding has been investigated. For the peptide fragment covering the more flexible N-terminal region of BLG (beta-strands A, B), where both theoretical predictions and kinetic refolding experiments suggested the formation of non-native alpha-helix, no native long-range contacts were identified, and a helical secondary structure was stabilized only in the presence of 25 mM SDS. At variance, in 50% (v/v) TFE, native, long-range hydrophobic interactions were observed in the peptide covering the core region comprising G and H beta-strands. The side chains involved in these interactions form a nativelike hydrophobic cluster, thus suggesting that the GH region may act as the folding initiation site for BLG. This result is reinforced by the identification, in the urea denaturated BLG, of residual structure located at the level of the GH interface, as evidenced by NMR analysis. These results, in excellent agreement with kinetic, thermodynamic, and cold denaturation folding data, once more underline the utmost importance of the GH region for the stability and folding of BLG. Severe aggregation effects prevented the structural analysis of the peptide covering the EFGH region, indicating that this larger segment does not represent an independent folding domain and that the terminal alpha-helix is necessary for stabilizing the BLG folding core.  相似文献   

16.
A 14 amino acid residue peptide from the helical region of Scorpion neurotoxin has been structurally characterized using CD and NMR spectroscopy in different solvent conditions. 2,2,2-Trifluoroethanol (TFE) titration has been carried out in 11 steps from 0 to 90% TFE and the gradual stabilization of the conformation to form predominantly alpha-helix covering all of the 14 residues has been studied by 1H and 13C NMR spectroscopy. Detailed information such as coupling constants, chemical shift indices, NOESY peak intensities and amide proton temperature coefficients at each TFE concentration has been extracted and analysed to derive the step-wise preferential stabilization of the helical segments along the length of the peptide. It was found that there is a finite amount of the helical conformation in the middle residues 5-11 even at low TFE concentrations. It was also observed that > 75% TFE (v/v) is required for the propagation of the helix to the N and C termini and for correct packing of the side chains of all of the residues. These observations are significant to understanding the folding of this segment in the protein and may throw light on the inherent preferences and side chain interactions in the formation of the helix in the peptide.  相似文献   

17.
A 22-residue synthetic peptide encompassing the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase was studied by two-dimensional NMR and CD spectroscopy. In water the peptide does not form any regular structure; however, addition of the helix-inducing solvent trifluoroethanol (TFE) causes it to form an alpha-helical structure. The proton NMR spectra of this peptide in 25% and 40% TFE were assigned by double quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser effect correlated spectroscopy spectra. In addition, the alpha-carbon chemical shifts were obtained from (1H,13C)-heteronuclear multiple quantum coherence spectra. The presence of numerous dNN(i, i + 1), d alpha N(i, i + 3), and d alpha beta(i, i + 3) NOE crosspeaks indicates that an alpha-helix can be formed from residues 3 to 20; this is further supported by the CD data. Upfield alpha-proton and downfield alpha-carbon shifts in this region of the peptide provide further support for the formation of an alpha-helix. The helix induced by TFE appears to be similar to that formed upon binding of the peptide to CaM.  相似文献   

18.
The four Trp dipoles in the gramicidin A (gA) channel modulate channel conductance, and their side chain conformations should therefore be important, but the energies of different conformations are unknown. A conformational search for the right-handed helix based on molecular mechanics in vacuo yielded 46 conformations within 20 kcal/mol of the lowest energy conformation. The two lowest energy conformations correspond to the solid-state and solution-state NMR conformations, suggesting that interactions within the peptide determine the conformation. For representative conformations, the electrostatic potential of the Trp side chains on the channel axis was computed. A novel application of the image-series method of. Biophys. J. 9:1160-1170) was introduced to simulate the polarization of bulk water by the Trp side chains. For the experimentally observed structures, the CHARm toph19 potential energy (PE) of a cation in the channel center is -1.65 kcal/mol without images. With images, the PE is -1.9 kcal/mol, demonstrating that the images further enhance the direct dipole effect. Nonstandard conformations yielded less favorable PEs by 0.4-1.1 kcal/mol.  相似文献   

19.
The mechanism by which peptides bind to micelles is believed to be a two-phase process, involving (i). initial electrostatic interactions between the peptide and micelle surface, followed by (ii). hydrophobic interactions between peptide side chains and the micelle core. To better characterize the electrostatic portion of this process, a series of pulse field gradient nuclear magnetic resonance (PFG-NMR) spectroscopic experiments were conducted on a group of neuropeptides with varying net cationic charges (+1 to +3) and charge location to determine both their diffusion coefficients and partition coefficients when in the presence of detergent micelles. Two types of micelles were chosen for the study, namely anionic sodium dodecylsulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles. Results obtained from this investigation indicate that in the case of the anionic SDS micelles, peptides with a larger net positive charge bind to a greater extent than those with a lesser net positive charge (bradykinin > substance P > neurokinin A > Met-enkephalin). In contrast, when in the presence of zwitterionic DPC micelles, the degree of mixed-charge nature of the peptide affects binding (neurokinin A > substance P > Met-enkephalin > bradykinin). Partition coefficients between the peptides and the micelles follow similar trends for both micelle types. Diffusion coefficients for the peptides in SDS micelles, when ranked from largest to smallest, follow a trend where increasing net positive charge results in the smallest diffusion coefficient: Met-enkephalin > neurokinin A > bradykinin > substance P. Diffusion coefficients when in the presence of DPC micelles, when ranked from largest to smallest, follow a trend where the presence of negatively-charged side chains results in the smallest diffusion coefficient: bradykinin > Met-enkephalin > substance P > neurokinin A.  相似文献   

20.
The ion permeability of transmembrane channels formed by the linear gramicidins is altered by amino acid sequence substitutions. We have previously shown that the polarity of the side chain at position one is important in modulating a channel's conductance and ion selectivity [Russel et al. (1986) Biophys. J. 49, 673-686]. Changes in polarity could alter ion permeability by (through-space) ion-dipole interactions or by (through-bond) inductive electron shifts. We have addressed this question by investigating the permeability characteristics of channels formed by gramicidins where the NH2-terminal amino acid is either phenylalanine or one of a series of substituted phenylalanines: p-hydroxy-, p-methoxy-, o-fluoro-, m-fluoro-, or p-fluorophenylalanine. The electron-donating or -withdrawing nature, as quantified by the Hammett constant, ranges from -0.37 to +0.34 for these side chains. Channels formed by these gramicidins show a more than 2.5-fold variation in their Na+ conductance, but the conductance variations do not rank in the order of the Hammett constants of the side chains. Inductive effects cannot therefore be of primary importance in the modulation of the gramicidin single-channel conductance by these side chains. The results support previous suggestions that electrostatic interactions between side chain dipoles and permeating ions can modify the energy profile for ion movement through the gramicidin channel and thus alter the conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号