首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal mode analysis (NMA) can facilitate quick and systematic investigation of protein dynamics using data from the Protein Data Bank (PDB). We developed an elastic network model-based NMA program using dihedral angles as independent variables. Compared to the NMA programs that use Cartesian coordinates as independent variables, key attributes of the proposed program are as follows: (1) chain connectivity related to the folding pattern of a polypeptide chain is naturally embedded in the model; (2) the full-atom system is acceptable, and owing to a considerably smaller number of independent variables, the PDB data can be used without further manipulation; (3) the number of variables can be easily reduced by some of the rotatable dihedral angles; (4) the PDB data for any molecule besides proteins can be considered without coarse-graining; and (5) individual motions of constituent subunits and ligand molecules can be easily decomposed into external and internal motions to examine their mutual and intrinsic motions. Its performance is illustrated with an example of a DNA-binding allosteric protein, a catabolite activator protein. In particular, the focus is on the conformational change upon cAMP and DNA binding, and on the communication between their binding sites remotely located from each other. In this illustration, NMA creates a vivid picture of the protein dynamics at various levels of the structures, i.e., atoms, residues, secondary structures, domains, subunits, and the complete system, including DNA and cAMP. Comparative studies of the specific protein in different states, e.g., apo- and holo-conformations, and free and complexed configurations, provide useful information for studying structurally and functionally important aspects of the protein.  相似文献   

2.
Horseradish peroxidase C is a class III peroxidase whose structure is stabilized by the presence of two endogenous calcium atoms. Calcium removal has been shown to decrease the enzymatic activity of the enzyme and significantly affect the spectroscopically detectable properties of the heme, such as the spin state of the iron, heme normal modes, and distortions from planarity. In this work, we report on normal mode analysis (NMA) performed on models subjected to 2 ns of molecular dynamics simulations to describe the effect of calcium removal on protein collective motions and to investigate the correlation between active site (heme) and protein matrix fluctuations. We show that in the native peroxidase model, heme fluctuations are correlated to matrix fluctuations while they are not in the calcium-depleted model.  相似文献   

3.
Normal mode analysis (NMA) has received much attention as a direct approach to extract the collective motions of macromolecules. However, the stringent requirement of computational resources by classical all-atom NMA limits the size of the macromolecules to which the method is normally applied. We implemented a novel coarse-grained normal mode approach based on partitioning the all-atom Hessian matrix into relevant and nonrelevant parts. It is interesting to note that, using classical all-atom NMA results as a reference, we found that this method generates more accurate results than do other coarse-grained approaches, including elastic network model and block normal mode approaches. Moreover, this new method is effective in incorporating the energetic contributions from the nonrelevant atoms, including surface water molecules, into the coarse-grained protein motions. The importance of such improvements is demonstrated by the effect of surface water to shift vibrational modes to higher frequencies and by an increase in overlap of the coarse-grained eigenvector space (the motion directions) with that obtained from molecular dynamics simulations of solvated protein in a water box. These results not only confirm the quality of our method but also point out the importance of incorporating surface structural water in studying protein dynamics.  相似文献   

4.
Dynamics of transfer RNAs analyzed by normal mode calculation.   总被引:2,自引:0,他引:2       下载免费PDF全文
Normal mode calculation is applied to tRNAPhe and tRNAAsp, and their structural and vibrational aspects are analyzed. Dihedral angles along the phosphate-ribose backbone (alpha, beta, gamma, epsilon, zeta) and dihedral angles of glycosyl bonds (chi) are selected as movable parameters. The calculated displacement of each atom agrees with experimental data. In modes with frequencies higher than 130 cm-1, the motions are localized around each stem and the elbow region of the L-shape. On the other hand, collective motions such as bending or twisting of arms are seen in modes with lower frequencies. Hinge axes and bend angles are calculated without prior knowledge. Movements in modes with very low frequencies are combinations of hinge bending motions with various hinge axes and bend angles. The thermal fluctuations of dihedral angles well reflect the structural characters of transfer RNAs. There are some dihedral angles of nucleotides located around the elbow region of L-shape, which fluctuate about five to six times more than the average value. Nucleotides in the position seem to be influential in the dynamics of the entire structure. The normal mode calculation seems to provide much information for the study of conformational changes of transfer RNAs induced by aminoacyl-tRNA synthetase or codon during molecular recognition.  相似文献   

5.
T Ichiye  M Karplus 《Proteins》1991,11(3):205-217
A method is described for identifying collective motions in proteins from molecular dynamics trajectories or normal mode simulations. The method makes use of the covariances of atomic positional fluctuations. It is illustrated by an analysis of the bovine pancreatic trypsin inhibitor. Comparison of the covariance and cross-correlation matrices shows that the relative motions have many similar features in the different simulations. Many regions of the protein, especially regions of secondary structure, move in a correlated manner. Anharmonic effects, which are included in the molecular dynamics simulations but not in the normal analysis, are of some importance in determining the larger scale collective motions, but not the more local fluctuations. Comparisons of molecular dynamics simulations in the present and absence of solvent indicate that the environment is of significance for the long-range motions.  相似文献   

6.
Normal mode analyses on the protein, bovine pancreatic trypsin inhibitor, in dihedral angle space and Cartesian coordinate space are compared. In Cartesian coordinate space it is found that modes of frequencies lower than 30 cm(-1) contribute 80% of the total mean-square fluctuation and are represented almost completely by motions in the dihedral angles. Bond angle and length fluctuations dominate in modes above 200 cm(-1), but contribute less than 2% to the total mean-square fluctuation. In the low-frequency modes a good correspondence between patterns of atomic displacements was found, but on average the root-mean-square fluctuations of the Cartesian coordinate modes are 13% greater than their dihedral angle counterparts. The main effect of fluctuations in the bond angles and lengths, therefore, is to allow the dihedral angles to become more flexible. As the important subspaces determined from the two methods overlap considerably, dihedral angle space analysis can be applied to proteins too large for Cartesian coordinate space analysis.  相似文献   

7.
Wako H  Endo S 《Biophysical chemistry》2011,159(2-3):257-266
The conformational change of a protein upon ligand binding was examined by normal mode analysis (NMA) based on an elastic-network model (ENM) for a full-atom system using dihedral angles as independent variables. Specifically, we investigated the extent to which conformational change vectors of atoms from an apo form to a holo form of a protein can be represented by a linear combination of the displacement vectors of atoms in the apo form calculated for the lowest-frequency m normal modes (m=1, 2,…, 20). In this analysis, the latter vectors were best fitted to the former ones by the least-squares method. Twenty-two paired proteins in the holo and apo forms, including three dimer pairs, were examined. The results showed that, in most cases, the conformational change vectors were reproduced well by a linear combination of the displacement vectors of a small number of low-frequency normal modes. The conformational change around an active site was reproduced as well as the entire conformational change, except for some proteins that only undergo significant conformational changes around active sites. The weighting factors for 20 normal modes optimized by the least-squares fitting characterize the conformational changes upon ligand binding for these proteins. The conformational changes sampled around the apo form of a protein by the linear combination of the displacement vectors obtained by ENM-based NMA may help solve the flexible-docking problem of a protein with another molecule because the results presented herein suggest that they have a relatively high probability of being involved in an actual conformational change.  相似文献   

8.
A molecular dynamics simulation of a simple model membrane system composed of a single amphiphilic helical peptide (ace-K2GL16K2A-amide) in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer was performed for a total of 1060 ps. The secondary structure of the peptide and its stability were described in terms of average dihedral angles, phi and psi, and the C alpha torsion angles formed by backbone atoms; by the average translation per residue along the helix axis; and by the intramolecular peptide hydrogen bonds. The results indicated that residues 6 through 15 remain in a stable right-handed alpha-helical conformation, whereas both termini exhibit substantial fluctuations. A change in the backbone dihedral angles for residues 16 and 17 is accompanied by the loss of two intramolecular hydrogen bonds, leading to a local but long-lived disruption of the helix. The dynamics of the peptide was characterized in terms of local and global helix motions. The local motions of the N-H bond angles were described in terms of the autocorrelation functions of P2[cos thetaNH(t, t + tau)] and reflected the different degrees of local peptide order as well as a variation in time scale for local motions. The chi1 and chi2 dihedral angles of the leucine side chains underwent frequent transitions between potential minima. No connection between the side-chain positions and their mobility was observed, however. In contrast, the lysine side chains displayed little mobility during the simulation. The global peptide motions were characterized by the tilting and bending motions of the helix. Although the peptide was initially aligned parallel to the bilayer normal, during the simulation it was observed to tilt away from the normal, reaching an angle of approximately 25 degrees by the end of the simulation. In addition, a slight bend of the helix was detected. Finally, the solvation of the peptide backbone and side-chain atoms was also investigated.  相似文献   

9.
We are describing efficient dynamics simulation methods for the characterization of functional motion of biomolecules on the nanometer scale. Multivariate statistical methods are widely used to extract and enhance functional collective motions from molecular dynamics (MD) simulations. A dimension reduction in MD is often realized through a principal component analysis (PCA) or a singular value decomposition (SVD) of the trajectory. Normal mode analysis (NMA) is a related collective coordinate space approach, which involves the decomposition of the motion into vibration modes based on an elastic model. Using the myosin motor protein as an example we describe a hybrid technique termed amplified collective motions (ACM) that enhances sampling of conformational space through a combination of normal modes with atomic level MD. Unfortunately, the forced orthogonalization of modes in collective coordinate space leads to complex dependencies that are not necessarily consistent with the symmetry of biological macromolecules and assemblies. In many biological molecules, such as HIV-1 protease, reflective or rotational symmetries are present that are broken using standard orthogonal basis functions. We present a method to compute the plane of reflective symmetry or the axis of rotational symmetry from the trajectory frames. Moreover, we develop an SVD that best approximates the given trajectory while respecting the symmetry. Finally, we describe a local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms of local features. The LFA representations are low-dimensional, and provide a reduced basis set for collective motions, but unlike global collective modes they are sparsely distributed and spatially localized. This yields a more reliable assignment of essential dynamics modes across different MD time windows.  相似文献   

10.
Site-directed spin labeling is a general method for investigating structure and conformational switching in soluble and membrane proteins. It will also be an important tool for exploring protein backbone dynamics. A semi-empirical analysis of nitroxide sidechain dynamics in spin-labeled proteins reveals contributions from fluctuations in backbone dihedral angles and rigid-body (collective) motions of alpha helices. Quantitative analysis of sidechain dynamics is sometimes possible, and contributions from backbone modes can be expressed in terms of relative order parameters and rates. Dynamic sequences identified by site-directed spin labeling correlate with functional domains, and so nitroxide scanning could provide an efficient strategy for identifying such domains in high-molecular weight proteins, supramolecular complexes and membrane proteins.  相似文献   

11.
The study of the dynamics and thermodynamics of small icosahedral virus capsids is an active field of research. Normal mode analysis is one of the computational tools that can provide important insights into the conformational changes of the virus associated with cell entry or caused by changing of the physicochemical environment. Normal mode analysis of virus capsids has been limited due to the size of these systems, which often exceed 50,000 residues. Here we present the first normal mode calculation with full dihedral flexibility of several virus capsids, including poliovirus, rhinovirus, and cowpea chlorotic mottle virus. The calculations were made possible by applying group theoretical methods, which greatly simplified the calculations without any approximation beyond the all-atom force field representations in general use for smaller protein systems. Since a full Cartesian basis set was too large to be handled by the available computer memory, we used a basis set that includes all internal dihedral angles of the system with the exception of the peptide bonds, which were assumed rigid. The fluctuations of the normal modes are shown to correlate well with crystallographic temperature factors. The motions of the first several normal modes of each symmetry type are described. A hinge bending motion in poliovirus was found that may be involved in the mechanism by which bound small molecules inhibit conformational changes of the capsid. Fully flexible normal mode calculations of virus capsids are expected to increase our understanding of virus dynamics and thermodynamics, and can be useful in the refinement of cryo-electron microscopy structures of viruses.  相似文献   

12.
The internal motion of yeast phenylalanine transfer RNA is studied by normal mode analysis in extended dihedral angle space, in which the flexibility of five-membered ribose rings is treated faithfully by introducing a variable for its pseudo-rotational motion. Analysis of global molecular motions reveals that the molecule is very soft. We show that this softness comes not from the property of the “material” comprising the molecule but from its slender shape. Analysis of thermal distance fluctuations reveals that this molecule can be regarded as consisting dynamically of three blocks. Thermal fluctuations of the mainchain dihedral angles show rigidity of the anticodon region. They also show flexibility of regions around nonstacking bases. Base-stacking interactions cause suppression of the correlated functions of mainchain dihedral angles beyond a ribose ring. We analyze the thermal fluctuation of parameters describing the positions of two adjacent bases. Fluctuations of relative translational parameters in the anticodon and acceptor stem regions are found to be larger than those in other stem regions. The relative translational motions cause the two stem regions to undergo global twisting and bending motions. We show that the role of pseudo-rotational motion of sugars is important in regions around bases which are involved in nonregular interactions. Received: 29 October 1998 / Revised version: 8 February 1999 / Accepted: 11 February 1999  相似文献   

13.
The dynamics of a finite α-helix have been studied in the harmonic approximation by a vibrational analysis of the atomic motions about their equilibrium positions. The system were represented by an empirical potential energy function, and all degrees of freedom (bond lengths, bond angles, and torsional angles) were allowed to vary. The complete results were compared with a more restrictive model in which the peptide dihedral angle was kept rigid; also, a model potential excluding hydrogen bonds was examined. Thermal fluctuations in the backbone dihedral angles ? and ψ are 12° to 15°. The fluctuations of adjacent dihedral angles are highly correlated, and the correlation pattern is affected by the flexibility of the peptide dihedral angle. Time-dependent autocorrelations in the motion of ? and ψ appear to decay due to dephasing in less than 1 psec, while the motions of the carbonyl oxygen and amide hydrogens out of the peptide plane are more harmonic. Length fluctuations have been evaluated and exhibit a strong end effect; the calculated elastic modulus is in agreement with other values. Rigid and adiabatic total energy surfaces corresponding to dihedral angle rotations in the middle of the helix have been obtained and compared with the quadratic approximation to those surfaces. The magnitudes and correlations between the fluctuations obtained by averaging over the adiabatic energy surface most closely resemble the vibrational results. Of particular interest is the fact that hydrogen bonds play a relatively small role in the local dihedral angle fluctuations, though the hydrogen bonds are important in the energy of overall length changes.  相似文献   

14.
The structure and internal motions of the protein hen egg white lysozyme are studied by analysis of simulation and experimental data. A molecular dynamics simulation and an energy minimization of the protein in vacuum have been made and the results compared with high-resolution structures and temperature factors of hen egg white lysozyme in two different crystal forms and of the homologous protein human lysozyme. The structures obtained from molecular dynamics and energy minimization have root-mean-square deviations for backbone atoms of 2.3 Å and 1.1–1.3 Å, respectively, relative to the crystal structures; the different crystal structures have root-mean-square deviations of 0.73–0.81 Å for the backbone atoms. In comparing the backbone dihedral angles, the difference between the dynamics and the crystal structure on which it is based is the same as that between any two crystal structures. The internal fluctuations of atomic positions calculated from the molecular dynamics trajectory agree well with the temperature factors from the three structures. Simulation and crystal results both show that there are large motions for residues involved in exposed turns of the backbone chain, relatively smaller motions for residues involved in the middle of helices or β-sheet structures, and relatively small motions of residues near disulfide bridges. Also, both the simulation and crystal data show that side-chain atoms have larger fluctuations than main-chain atoms. Moreover, the regions that have large deviations among the x-ray crystal structures, which indicates flexibility, are found to have large fluctuations in the simulation.  相似文献   

15.
The mixed-resolution elastic network model was introduced previously for computing the motions of a structure, which is described at different levels of detail in different parts, for example, with atomistic and residue-level regions. This method has proved to be an efficient tool to explore the collective dynamics of proteins with some atomistic details, which would be difficult to obtain with either conventional full-atom approaches or fully coarse-grained models. Understanding function often requires atomic detail, but not necessarily for the entire structure. In this study, the calculation of the interaction forces between different resolution regions for the hierarchical levels of coarse-graining is further elaborated on in the new approach by considering explicitly the atomic contacts in the crystal structure. The collective dynamics of the enzyme triosephosphate isomerase and its active site together with loop 6 motions are considered in detail. The supramolecular assemblage ribosome and local atomic motions in its “interesting” functional part—the decoding center—are investigated for the low frequency range of the spectrum with high computational efficiency. This new atom-based mixed coarse-graining approach can be effectively used to generate realistic high-resolution conformations of extremely large protein-DNA or RNA complexes by performing energy minimization on structures deformed along the normal modes of the elastic network model. The new model permits focusing on specific functional parts that move in coordination and response to the remainder of the entire structure.  相似文献   

16.
Molecular fluctuations of the native conformation of c-AMP dependent protein kinase (cAPK) have been investigated with three different approaches. The first approach is the full atomic normal mode analysis (NMA) with empirical force fields. The second and third approaches are based on a coarse-grained model with a single single-parameter- harmonic potential between close residues in the crystal structure of the molecule without any residue specificity. The second method calculates only the magnitude of fluctuations whereas the third method is developed to find the directionality of the fluctuations which are essential to understand the functional importance of biological molecules. The aim, in this study, is to determine whether using such coarse-grained models are appropriate for elucidating the global dynamic characteristics of large proteins which reduces the size of the system at least by a factor of ten. The mean-square fluctuations of C(alpha) atoms and the residue cross-correlations are obtained by three approaches. These results are then compared to test the results of coarse grained models on the overall collective motions. All three of the approaches show that highly flexible regions correspond to the activation and solvent exposed loops, whereas the conserved residues (especially in substrate binding regions) exhibit almost no flexibility, adding stability to the structure. The anti-correlated motions of the two lobes of the catalytic core provide flexibility to the molecule. High similarities among the results of these methods indicate that the slowest modes governing the most global motions are preserved in the coarse grained models for proteins. This finding may suggest that the general shapes of the structures are representative of their dynamic characteristics and the dominant motions of protein structures are robust at coarse-grained levels.  相似文献   

17.
We introduce an approach based on the recently introduced functional mode analysis to identify collective modes of internal dynamics that maximally correlate to an external order parameter of functional interest. Input structural data can be either experimentally determined structure ensembles or simulated ensembles, such as molecular dynamics trajectories. Partial least-squares regression is shown to yield a robust solution to the multidimensional optimization problem, with a minimal and controllable risk of overfitting, as shown by extensive cross-validation. Several examples illustrate that the partial least-squares-based functional mode analysis successfully reveals the collective dynamics underlying the fluctuations in selected functional order parameters. Applications to T4 lysozyme, the Trp-cage, the aquaporin channels Aqy1 and hAQP1, and the CLC-ec1 chloride antiporter are presented in which the active site geometry, the hydrophobic solvent-accessible surface, channel gating dynamics, water permeability (p(f)), and a dihedral angle are defined as functional order parameters. The Aqy1 case reveals a gating mechanism that connects the inner channel gating residues with the protein surface, thereby providing an explanation of how the membrane may affect the channel. hAQP1 shows how the p(f) correlates with structural changes around the aromatic/arginine region of the pore. The CLC-ec1 application shows how local motions of the gating Glu(148) couple to a collective motion that affects ion affinity in the pore.  相似文献   

18.
Chu JW  Voth GA 《Biophysical journal》2006,90(5):1572-1582
A coarse-grained (CG) procedure that incorporates the information obtained from all-atom molecular dynamics (MD) simulations is presented and applied to actin filaments (F-actin). This procedure matches the averaged values and fluctuations of the effective internal coordinates that are used to define a CG model to the values extracted from atomistic MD simulations. The fluctuations of effective internal coordinates in a CG model are computed via normal-mode analysis (NMA), and the computed fluctuations are matched with the atomistic MD results in a self-consistent manner. Each actin monomer (G-actin) is coarse-grained into four sites, and each site corresponds to one of the subdomains of G-actin. The potential energy of a CG G-actin contains three bonds, two angles, and one dihedral angle; effective harmonic bonds are used to describe the intermonomer interactions in a CG F-actin. The persistence length of a CG F-actin was found to be sensitive to the cut-off distance of assigning intermonomer bonds. Effective harmonic bonds for a monomer with its third nearest neighboring monomers are found to be necessary to reproduce the values of persistence length obtained from all-atom MD simulations. Compared to the elastic network model, incorporating the information of internal coordinate fluctuations enhances the accuracy and robustness for a CG model to describe the shapes of low-frequency vibrational modes. Combining the fluctuation-matching CG procedure and NMA, the achievable time- and length scales of modeling actin filaments can be greatly enhanced. In particular, a method is described to compute the force-extension curve using the CG model developed in this work and NMA. It was found that F-actin is easily buckled under compressive deformation, and a writhing mode is developed as a result. In addition to the bending and twisting modes, this novel writhing mode of F-actin could also play important roles in the interactions of F-actin with actin-binding proteins and in the force-generation process via polymerization.  相似文献   

19.
Molecular dynamics simulations of the catalytic subunit of cAMP dependent protein kinase (cAPK) have been performed in an aqueous environment. The relations among the protein hydrogen‐bonding network, secondary structural elements, and the internal motions of rigid domains were examined. The values of fluctuations of protein dihedral angles during dynamics show quite distinct maxima in the regions of loops and minima in the regions of α‐helices and β‐strands. Analyses of conformation snapshots throughout the run show stable subdomains and indicate that these rigid domains are constrained during the dynamics by a stable network of hydrogen bonds. The most stable subdomain during the dynamics was in the small lobe including part of the carboxy‐terminal tail. The most significant flexible region was the highly conserved glycine‐rich loop between β strands 1 and 2 in the small lobe. Many of the main chain dihedral angle changes measured in a comparison of the crystallographic structures of “open” and “closed” conformations of cAPK correspond to the highly flexible residues found during dynamics. © 1999 John Wiley & Sons, Inc. Biopoly 50: 513–524, 1999  相似文献   

20.
The realization that experimentally observed functional motions of proteins can be predicted by coarse-grained normal mode analysis has renewed interest in applications to structural biology. Notable applications include the prediction of biologically relevant motions of proteins and supramolecular structures driven by their structure-encoded collective dynamics; the refinement of low-resolution structures, including those determined by cryo-electron microscopy; and the identification of conserved dynamic patterns and mechanically key regions within protein families. Additionally, hybrid methods that couple atomic simulations with deformations derived from coarse-grained normal mode analysis are able to sample collective motions beyond the range of conventional molecular dynamics simulations. Such applications have provided great insight into the underlying principles linking protein structures to their dynamics and their dynamics to their functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号