首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A staining reaction was developed to specifically detect arylsulfatase A activity in the presence of arylsulfatases B and C. Nitrocatechol, generated by all arylsulfatases from the substrate p-nitrocatechol sulfate, can be coupled to produce Hatchett 's brown which reacts with 3,3'-diaminobenzidine to yield an osmiophilic polymer visible under the electron microscope. The reaction was made specific for arylsulfatase A by inhibiting arylsulfatase C activity with low pH and arylsulfatase B activity with pyrophosphate. The specificity was confirmed both by electrophoretic analysis and by patient fibroblasts deficient only in arylsulfatase A activity. Under optimal conditions for preserving structural integrity and enzyme activity, enzyme reaction deposits were found mainly around vesicles. Some of these vesicles were large and heterogeneous (48-330 nm in diameter), distributed randomly within the cytoplasm, but most of the positive-reacting vesicles were uniform in size (86 +/- 18 nm in diameter) and distributed in a peripheral zone about 0.1-0.5 micron wide. These periplasmic vesicles might be partly fused with each other or with the plasma membrane. In conclusion, a specific stain for arylsulfatase A activity suitable for light and electron microscopy and the optimal conditions for structural and enzymatic preservations were developed. Although this enzyme has been considered to be lysosomal in origin, most of the activity was detected in periplasmic vesicles near the cell surface.  相似文献   

2.
A combination of differential centrifugation and carrier-free continuous electrophoresis is introduced as a new method for the isolation of animal cell organelles. Various buffers were systematically checked in order to find the system which preserves the organelles and gives as well a good separation in the free-flow electrophoresis apparatus. Triethanolamine-acetate buffer (10 mM), pH 7.4 was used. The isolated lysosomes were pure according to marker enzymes and electron micrographs. A heterogeneity of the lysosomes in electrophoretic mobility was demonstrated with respect to the marker enzymes arylsulfatase and β-glucuronidase. The lysosomes with higher mobility showed a maximum enrichment of 240-fold with respect to arylsulfatase. The lysosomes with lower electrophoretic mobility showed a 65-fold enrichment with respect to β-glucuronidase. The ratio of β-glucuronidase to arylsulfatase varied from 2:1 to 1:2 in lysosomes of different mobility. The yield amounted to approximately 1 mg of lysosomal protein per gram of liver protein. 5–8 mg of lysosomes can be obtained in one experiment. The electrophoretic separation proves to be an effective tool in obtaining pure and well preserved lysosomes.  相似文献   

3.
Previous work has shown that specific electrophoretic variants of arylsulfatase A occur more frequently among alcoholic patients than among psychiatric and normal controls. The present study sequenced the gene for two of these electrophoretic variants, IIIa and IIIb. Both contain an A-to-G transition corresponding to substitution of Asn350 by Ser, with the resulting loss of anN -glycosylation site. The difference in electrophoretic mobility of their gene products is due to a mutation in the IIIb gene resulting in the replacement of Arg496 by His. Evidence is presented that individuals possessing either of two other electrophoretic variants, Va and Vb, are heterozygous for a normal ASA allele and either a IIIa or IIIb allele, respectively. Thus, the relationship between the phenotype of the electrophoretic banding patterns, IIIa, IIIb, Va, and Vb, and their corresponding genotypes has been elucidated.  相似文献   

4.
We identified a patient suffering from late infantile metachromatic leukodystrophy who genetically seemed to be homozygous for the mutations signifying the arylsulfatase A pseudodeficiency allele. Homozygosity for the pseudodeficiency allele is associated with low arylsulfatase A activity but does not cause a disease. Analysis of the arylsulfatase A gene in this patient revealed a C----T transition in exon 2, causing a Ser 96----Phe substitution in addition to the sequence alterations causing arylsulfatase A pseudodeficiency. Although this mutation was found only in 1 of 78 metachromatic leukodystrophy patients tested, five more patients were identified who seemed hetero- or homozygous for the pseudodeficiency allele. The existence of nonfunctional arylsulfatase A alleles derived from the pseudodeficiency allele calls for caution when the diagnosis of arylsulfatase A pseudodeficiency is based solely on the identification of the mutations characterizing the pseudodeficiency allele.  相似文献   

5.
Fine structural localization of arylsulfatase in the rabbit blood platelets has been investigated in this study. Among many cell organellae, reaction products were exclusively observed in the alpha granules of the platelets. Within the alpha granules, arylsulfatase activity appeared to localize in variable patterns, i.e. reaction products confined mainly at the peripheral region in many granules, while they deposited heavily throughout the granule matrices in some others. In a blood platelets, each alpha granule showed the different staining pattern which indicated more variable functional heterogeneity in the granules.  相似文献   

6.
A simple and rapid method for the purification of arylsulfatase A (EC 3.1.6.1) from sheep brain has been developed. This includes the concanavalin A-Sepharose affinity chromatography and the pH-dependent polymerization and depolymerization of the enzyme. By these methods a homogeneous enzyme was obtained and the enzyme was purified 7180-fold. Sheep brain arylsulfatase A has been shown to be a glycoprotein containing 25% neutral sugar and 0.5% sialic acid. The constituent neutral sugars were identified as glucose and mannose.  相似文献   

7.
When arylsulfatase C, a microsomal membrane-bound enzyme, is assayed with its natural substrates, the 3-beta-hydroxysteroid sulfates, it is also known as steroid sulfatase. Whether arylsulfatase C and steroid sulfatase are identical enzymes or not, however, has long been disputed. We now report that two electrophoretic variants of arylsulfatase C occur in normal human fibroblasts: one has a single anodic band of activity, "s," and the other has an additional faster migrating band, "f". The two types, s and "f + s", occur in cells from either sex. When fibroblast strains with the f + s forms of arylsulfatase C were cloned, two types of primary clones were always obtained: s and f + s. A single f band was never seen. When these primary clones were subcloned, however, the arylsulfatase C phenotype remained unchanged: primary s clones gave rise to s subclones and f + s clones to f + s subclones only. Therefore, these forms were clonal in origin and demonstrated a novel inheritance pattern in human cultured cells. The appearance of increasing amounts of the f band was correlated with up to 4-fold increase of arylsulfatase C activity, whereas the steroid sulfatase activity remained constant, thus demonstrating that arylsulfatase C was not identical with steroid sulfatase activity. Polyclonal antibodies raised against the s form immunoprecipitated activities of the s form of arylsulfatase C and steroid sulfatase but not the f form of arylsulfatase C. Therefore, we conclude that only the s form of arylsulfatase C is immunologically related to steroid sulfatase so that arylsulfatase C per se is not necessarily identical with steroid sulfatase. In addition, a novel form of genetic heterogeneity of isozymes in human fibroblasts is demonstrated.  相似文献   

8.
A gene encoding a putative arylsulfatase from the hyperthermophilic archaeon Pyrococcus furiosus was identified, cloned, and expressed as a fusion protein with a Sce VMA intein and chitin binding domain (CBD) residue. The gene (PF1345) from P. furiosus encoding a 35 kDa protein showed some similarity (17 ~ 19%) with other arylsulfatases from the bacteria. The recombinant fusion arylsulfatase was overexpressed in E. coli and partially purified. Its molecular mass was estimated to be 90 kDa by SDS-PAGE. The optimal temperature and pH for arylsulfatase activity were found to be 45°C and 9.5, respectively. Various divalent cations (Ca2+, Mg2+, Co2+, Cu2+, Zn2+, and Mn2+) slightly activated the arylsulfatase activity in a narrow range of concentrations (below 0.5 mM), whereas Zn2+ concentrations above 2.0 mM significantly inhibited the activity. After the reaction of agar with recombinant fusion arylsulfatase for 12 h at 50°C, 75% of the sulfate in the agar was removed, and the DNA migration was greatly enhanced. Therefore, the arylsulfatase in this study could be applicable for the production of electrophoretic grade agarose by removing sulfate groups in agar.  相似文献   

9.
A new electrophoretic variant of porcine 6-phosphogluconate dehydrogenase (PGD) is described. The new variant, PGD C, has been shown to be controlled by a third allele, PgdC, at the Pgd locus.  相似文献   

10.
BALB/c male mice possess twofold higher kidney p-nitrocatechol-SO4 arylsulfatase B than do A/HeJ male mice; however, their liver arylsulfatase activities are comparable. Twentyfold-purified kidney arylsulfatases B from these two strains have similar Michaelis constants, electrophoretic mobilities, pH optima, and inhibitor profiles; however, the BALB/c enzyme is more heat stable than the A/HeJ enzyme. BALB/c, C3H/HeJ, DBA/2J, and SWR/J mice share an autosomal allele, As-1a, which apparently determines the heat-stable arylsulfatase B, while A/HeJ and C57BL/6J mice possess the As-1b allele, which determines the heat-sensitive enzyme. A second autosomal locus, Asr-1, determines liver arylsulfatase B activity. C57BL/6J mice carry the Asr-1a allele, which results in high liver activities, while C3H/HeJ mice are homozygous for the low-activity allele, Asr-1b. Male mice generally have 30-40% higher kidney activities than females; however, female kidney arylsulfatase activities rise and actually surpass those of males during late pregnancy and lactation.  相似文献   

11.
Summary A new G6PD variant has been detected in a Cuban male and there is no evidence of associated hematological abnormalities.The main characteristics of this variant, moderate deficiency, slow electrophoretic mobility, increased utilization of the substrate analogues, and a different chromatographic behavior, indicate that it is a variant that has not been previously described.  相似文献   

12.
The structures of human arylsulfatase A crystals soaked in solutions containing 4-methylumbelliferyl phosphate and O-phospho-DL-tyrosine have been determined at 2.7- and 3.2-A resolution, respectively. The formylglycine in position 69, a residue crucial for catalytic activity, was unambiguously identified in both structures as forming a covalent bond to the phosphate moiety. A hydroxyl group is present at the Cbeta of residue 69 and the formation of one out of two possible stereomeric forms is strongly favoured. The structures confirm the importance of the gem-diol intermediate in the arylsulfatase's catalytic mechanism. The presence of an apparently stable covalent bond is consistent with the weak phosphatase activity observed for human arylsulfatase A. The structures of the complexes suggest that phosphate ions and phosphate esters inhibit arylsulfatase in non-covalent and covalent modes, respectively. The metal ion present in the active site of arylsulfatase A isolated from human placenta is Ca(2+) and not Mg(2+) as was found in the structure of the recombinant enzyme.  相似文献   

13.
Production of low sulfated agar or agarose from agar or agaropectins by enzymatic hydrolysis has advantages but a high melting temperature is needed. The arylsulfatase gene from thermophilic Thermotoga maritima was cloned and expressed in Escherichia coli W3110 with pCol-MICT as the vector. The gene was comprised of 1,782 bp and encoded a protein of 593 amino acids with a molecular weight of 65 kDa. The recombinant arylsulfatase was partially purified by heat treatment (70°C, 30 min) and characterized. The enzyme was prepared with a total protein content of 2.4 mg and a specific activity of 20.63 U/mg. Optimal temperature and pH of the enzyme were 80°C and 7.0, respectively, for hydrolysis of p-nitrophenyl sulfate and sulfate content of agar was diminished to 40% after a 12 h treatment at that condition. Enhanced electrophoretic movement of DNA was observed in enzymetreated agar gel compared to that in a non-treated agar gel. These results suggest that thermophilic arylsulfatase expressed in E. coli could be useful for producing a low sulfated agar and electrophoretic grade agarose.  相似文献   

14.
SM/J liver arylsulfatase B has a more rapid electrophoretic mobility and occurs as a series of more acidic isozymes following electrofocusing in narrow pH gradients than the liver enzyme from C57BL/6J mice. The SM/J and C57BL/6J electrofocusing patterns were both converted to a single isozyme with similar isoelectric points by pretreatment with neuraminidase, suggesting that the SM/J and C57BL/6J isozymes differed with respect to their sialic acid content. Arylsulfatase B electrofocusing and thermostability phenotypes segregated independently among progeny of SM/J×C57BL/6J crosses, suggesting that the electrofocusing phenotypes were not determined by different alleles at As-1, the putative structural locus for arylsulfatase B. Comparison of the joint segregation of hepatic acid phosphatase electrophoretic patterns and liver arylsulfatase B electrofocusing profiles revealed that the electrofocusing profiles may be determined by a region on chromosome 17 near or identical to Apl. Kidney, brain, and spleen arylsulfatase B electrofocusing patterns did not appear to differ between SM/J and C57BL/6J mice.This research was supported in part by Biomedical Sciences Research Support Grant RR-07030, by NIGMS Grant 1-RO1GM27707-01, and by Grant 1–570 from the National Foundation/March of Dimes.  相似文献   

15.
Summary A new electrophoretic variant of the diaphorase locus 3 termed DIA3 6-1 has been detected in one Polish man during a population study.  相似文献   

16.
本文报告一种新的胎儿血红蛋白变异体。先证者为一健康汉族女性新生儿。变异体含量占全部Hb的7.7%。醋纤薄膜电泳(pH8.6)显示变异体区带稍慢于HbD组,但比HbA_2快。分离的变异体的热变性曲线显示其沉淀速度较HbA和HbF为快,说明它属于不稳定Hb。通过DEAE-纤维素柱层析,去除血红素、CM-纤维素柱层析、TPCK-胰蛋白酶消化、滤纸指纹图谱分析、氨基酸组成分析和微量顺序测定等手段,变异体被确定为Ar~T25(B7)Gly→Arg,根据发现地,命名为Hb F-新疆。  相似文献   

17.
The genetic heterogeneity of human pancreatic alpha-amylase (alpha-1,4-glucan 4-glucanohydrolase, E.C. 3.2.1.1) has been better defined through the development of an asparagine buffered electrophoretic gel system. Three alleles had been identified for the pancreatic amylase locus, AMY2, with two variant alleles as autosomal dominant traits on Tris HCl buffered sheet gels. The asparagine buffered sheet gel now allows the differentiation of the genotypes AMY2B/AMY2B,AMY2B/AMY2A, and AMY2B/AMY2C, thus classifying these three alleles as codominants. Asparagine buffered polyacrylamide gels and thin layer polyacrylamide isoelectric focusing aided in the identification of three new pancreatic amylase variants: AMY2D,AMY2E, and AMY2F. AMY2E has been identified only in AMY2B and AMY2E individuals. This allele is proposed as a quantitative activity variant with essentially the same electrophoretic mobility as AMY2A. The other new autosomal variants have each been identified in single white families. AMY2D is dominant and AMY2F is a codominant trait as shown on thin layer polyacrylamide isoelectric focusing gels.  相似文献   

18.
Cloning and expression of human arylsulfatase A   总被引:25,自引:0,他引:25  
A full length cDNA for human arylsulfatase A was cloned and sequenced. The predicted amino acid sequence comprises 507 residues. A putative signal peptide of 18 residues is followed by the NH2-terminal sequence of placental arylsulfatase A. One of the arylsulfatase A peptides ends 3 residues ahead of the predicted COOH terminus. This indicates that proteolytic processing of arylsulfatase A is confined to the cleavage of the signal peptide. The predicted sequence contains three potential N-glycosylation sites, two of which are likely to be utilized. The sequence shows no homology to any of the known sequences of lysosomal enzymes but a 35% identity to human steroid sulfatase. Transfection of monkey and baby hamster kidney cells resulted in an up to 200-fold increase of the arylsulfatase A activity. The arylsulfatase A was located in lysosome-like structures and transported to dense lysosomes in a mannose 6-phosphate receptor-dependent manner. The arylsulfatase A cDNA hybridizes to 2.0- and 3.9-kilobase species in RNA from human fibroblasts and human liver. RNA species of similar size were detected in metachromatic leukodystrophy fibroblasts of two patients, in which synthesis of arylsulfatase A polypeptides was either detectable or absent.  相似文献   

19.
The identification of a second structural gene mutation at the feline arylsulfatase B locus (MPS VIb) provided the opportunity to investigate the expression of allelism by characterization of the residual enzymatic activity in feline mucopolysaccharidosis VI, an animal analogue of human Maroteaux-Lamy syndrome. Matings were designed to produce affected homozygotes who were homoallelic for the MPS VIa and MPS VIb mutations or heteroallelic genetic compounds (MPS VIa/VIb). The physicokinetic and immunological properties of the partially purified residual hepatic arylsulfatase B isozymes from the affected homoallelic and heteroallelic cats were compared to those of the normal feline enzyme. The residual hepatic arylsulfatase B activities from the inbred MPS VIa and MPS VIb homozygotes were distinguished by differences in physicokinetic and immunological properties. The newly identified mutant isozyme b had abnormal kinetic properties toward artificial and natural substrates, normal cryo- and thermostabilities, a normal molecular weight and an altered electrophoretic mobility. Polyacrylamide gel electrophoresis demonstrated that the mutant b subunits formed dimers with normal subunits in obligate heterozygotes (MPS VI+/b). In contrast, mutant isozyme a subunits from obligate MPS VIa/+ heterozygotes did not dimerize with the normal subunit, and the mutant and normal isozymes could be separated by anion exchange chromatography and polyacrylamide gel electrophoresis. Characterization of the partially purified residual hepatic arylsulfatase B activity from the heteroallelic homozygotes revealed the presence of both mutant isozymes a and b. The demonstration of two allelic mutations in the feline arylsulfatase B gene documented the occurrence of genetic heterogeneity in feline mucopolysaccharidosis VI and permitted characterization of the enzymatic defect in homoallelic and heteroallelic (genetic compound) homozygotes, providing a model for the study of allelism in human genetic disorders.  相似文献   

20.
The critical step for sorting of lysosomal enzymes is the recognition by a Golgi-located phosphotransferase. The topogenic structure common to all lysosomal enzymes essential for this recognition is still not well defined, except that lysine residues seem to play a critical role. Here we have substituted surface-located lysine residues of lysosomal arylsulfatases A and B. In lysosomal arylsulfatase A only substitution of lysine residue 457 caused a reduction of phosphorylation to 33% and increased secretion of the mutant enzyme. In contrast to critical lysines in various other lysosomal enzymes, lysine 457 is not located in an unstructured loop region but in a helix. It is not strictly conserved among six homologous lysosomal sulfatases. Based on three-dimensional structure comparison, lysines 497 and 507 in arylsulfatase B are in a similar position as lysine 457 of arylsulfatase A. Also, the position of oligosaccharide side chains phosphorylated in arylsulfatase A is similar in arylsulfatase B. Despite the high degree of structural homology between these two sulfatases substitution of lysines 497 and 507 in arylsulfatase B has no effect on the sorting and phosphorylation of this sulfatase. Thus, highly homologous lysosomal arylsulfatases A and B did not develop a single conserved phosphotransferase recognition signal, demonstrating the high variability of this signal even in evolutionary closely related enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号