首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Autophagy》2013,9(10):1159-1172
Sorafenib, a potent multikinase inhibitor, has been recognized as the standard systemic treatment for patients with advanced hepatocellular carcinoma (HCC). However, the direct functional mechanism of tumor lethality mediated by sorafenib remains to be fully characterized, and the precise mechanisms of drug resistance are largely unknown. Here, we showed sorafenib induced both apoptosis and autophagy in human HCC cells through a mechanism that involved endoplasmic reticulum (ER) stress and was independent of the MEK1/2-ERK1/2 pathway. Upregulation of IRE1 signals from sorafenib-induced ER stress was critical for the induction of autophagy. Moreover, autophagy activation alleviated the ER stress-induced cell death. Inhibition of autophagy using either pharmacological inhibitors or essential autophagy gene knockdown enhanced cell death in sorafenib treated HCC cell lines. Critically, the combination of sorafenib with the autophagy inhibitor chloroquine produced more pronounced tumor suppression in HCC both in vivo and in vitro. These findings indicated that both ER stress and autophagy were involved in the cell death evoked by sorafenib in HCC cells. The combination of autophagy modulation and molecular targeted therapy is a promising therapeutic strategy in treatment of HCC.  相似文献   

2.
Shi YH  Ding ZB  Zhou J  Hui B  Shi GM  Ke AW  Wang XY  Dai Z  Peng YF  Gu CY  Qiu SJ  Fan J 《Autophagy》2011,7(10):1159-1172
Sorafenib, a potent multikinase inhibitor, has been recognized as the standard systemic treatment for patients with advanced hepatocellular carcinoma (HCC). However, the direct functional mechanism of tumor lethality mediated by sorafenib remains to be fully characterized, and the precise mechanisms of drug resistance are largely unknown. Here, we showed sorafenib induced both apoptosis and autophagy in human HCC cells through a mechanism that involved endoplasmic reticulum (ER) stress and was independent of the MEK1/2-ERK1/2 pathway. Upregulation of IRE1 signals from sorafenib-induced ER stress was critical for the induction of autophagy. Moreover, autophagy activation alleviated the ER stress-induced cell death. Inhibition of autophagy using either pharmacological inhibitors or essential autophagy gene knockdown enhanced cell death in sorafenib treated HCC cell lines. Critically, the combination of sorafenib with the autophagy inhibitor chloroquine produced more pronounced tumor suppression in HCC both in vivo and in vitro. These findings indicated that both ER stress and autophagy were involved in the cell death evoked by sorafenib in HCC cells. The combination of autophagy modulation and molecular targeted therapy is a promising therapeutic strategy in treatment of HCC.  相似文献   

3.
Sorafenib is the standard first-line drug for the treatment of advanced hepatocellular carcinoma (HCC), however, its therapeutic efficacy is not satisfactory due to primary or secondary resistance of HCC cells. In the present study, we identified Metaxin 1 (MTX1) as a new regulator of sorafenib resistance in HCC through genome-scale CRISPR activation (CRISPRa) screening. We found that MTX1 was frequently upregulated in HCC tissues and overexpression of MTX1 promoted HCC cell proliferation in vitro and in vivo. As well, MTX1 overexpression increased cell growth rate and decreased cell apoptosis upon sorafenib treatment. Consistently, the resistance induced by MTX1 was also observed in subcutaneous xenograft tumor model. Clinically, high expression of MTX1 was closely related with poor outcomes in HCC patients who received sorafenib treatment. Mechanistically, overexpression of MTX1 could promote HCC cell autophagy via interacting with and inhibiting CDGSH iron sulfur domain 1 (CISD1), an autophagy negative regulator. Taken together, our findings suggest that MTX1 is upregulated in HCC and contributes to sorafenib resistance via a possible mechanism involving CISD1 mediated autophagy.  相似文献   

4.
Pemetrexed (ALIMTA) is a folate anti-metabolite that has been approved for the treatment of non-small cell lung cancer, and has been shown to stimulate autophagy. In the present study, we sought to further understand the role of autophagy in the response to pemetrexed and to test if combination therapy could enhance the level of toxicity through altered autophagy in tumor cells. The multikinase inhibitor sorafenib (NEXAVAR), used in the treatment of renal and hepatocellular carcinoma, suppresses tumor angiogenesis and promotes autophagy in tumor cells. We found that sorafenib interacted in a greater than additive fashion with pemetrexed to increase autophagy and to kill a diverse array of tumor cell types. Tumor cell types that displayed high levels of cell killing after combination treatment showed elevated levels of AKT, p70 S6K and/or phosphorylated mTOR, in addition to class III RTKs such as PDGFRb and VEGFR1, known in vivo targets of sorafenib. In xenograft and in syngeneic animal models of mammary carcinoma and glioblastoma, the combination of sorafenib and pemetrexed suppressed tumor growth without deleterious effects on normal tissues or animal body mass. Taken together, the data suggest that premexetred and sorafenib act synergistically to enhance tumor killing via the promotion of a toxic form of autophagy that leads to activation of the intrinsic apoptosis pathway, and predict that combination treatment represents a future therapeutic option in the treatment of solid tumors.  相似文献   

5.
《Autophagy》2013,9(10):1261-1262
Pemetrexed (ALIMTA) is a folate anti-metabolite that has been approved for the treatment of non-small cell lung cancer, and has been shown to stimulate autophagy. In the present study, we sought to further understand the role of autophagy in the response to pemetrexed and to test if combination therapy could enhance the level of toxicity through altered autophagy in tumor cells. The multikinase inhibitor sorafenib (NEXAVAR), used in the treatment of renal and hepatocellular carcinoma, suppresses tumor angiogenesis and promotes autophagy in tumor cells. We found that sorafenib interacted in a greater than additive fashion with pemetrexed to increase autophagy and to kill a diverse array of tumor cell types. Tumor cell types that displayed high levels of cell killing after combination treatment showed elevated levels of AKT, p70 S6K and/or phosphorylated mTOR, in addition to class III RTKs such as PDGFRb and VEGFR1, known in vivo targets of sorafenib. In xenograft and in syngeneic animal models of mammary carcinoma and glioblastoma, the combination of sorafenib and pemetrexed suppressed tumor growth without deleterious effects on normal tissues or animal body mass. Taken together, the data suggest that premexetred and sorafenib act synergistically to enhance tumor killing via the promotion of a toxic form of autophagy that leads to activation of the intrinsic apoptosis pathway, and predict that combination treatment represents a future therapeutic option in the treatment of solid tumors.  相似文献   

6.
A multikinase inhibitor of the Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, sorafenib, is increasingly being used in the management of hepatocellular carcinoma, and its combination with conventional chemotherapeutics has stimulated particular interest. Although the combination of sorafenib with doxorubicin (DOX) is presently being investigated in a phase III randomized trial, little is known about the molecular mechanisms of their interaction. Because DOX causes cell death through upregulation of the MEK/ERK pathway, and sorafenib has an opposite influence on the same cascade, we hypothesized that co-treatment with these drugs may lead to an antagonistic effect. DOX treatment arrested proliferation and induced autophagic cell death in Hep3B cells, whereas apoptotic changes were not conspicuous. Sorafenib alone affected viability and caused massive mitochondrial degradation. However, when added together with DOX, sorafenib facilitated cell cycle progression, increased survival, and reduced autophagy. To evaluate the molecular mechanisms of this phenomenon, we examined the expression of ERK1/2, protein kinase B (Akt), and cyclin D1, as well as the members of Bcl-2 family. ERK1/2 activation induced by DOX was suppressed by sorafenib. Similarly, ERK targeting with the selective inhibitor U0126 impaired DOX-induced toxicity. Treatment with sorafenib, either alone or in combination with DOX, resulted in Akt activation. The role of sorafenib-induced degradation of cyclin D1 in the suppression of DOX efficiency is discussed. In conclusion, MEK/ERK counteraction, stimulation of survival via Akt and dysregulation of cyclin D1 could contribute to the escape from DOX-induced autophagy and thus promote cancer cell survival. The use of MEK/ERK inhibitors in combination with chemotherapeutics, intended to enhance anticancer efficacy, requires the consideration of possible antagonistic effects.  相似文献   

7.
The catabolic process that delivers cytoplasmic constituents to the lysosome for degradation, known as autophagy, is thought to act as a cytoprotective mechanism in response to stress or as a pathogenic process contributing towards cell death. Animal and human studies have shown that autophagy is substantially dysregulated in renal cells in diabetes, suggesting that activating autophagy could be a therapeutic intervention. However, under prolonged hyperglycaemia with impaired lysosome function, increased autophagy induction that exceeds the degradative capacity in cells could contribute toward autophagic stress or even the stagnation of autophagy, leading to renal cytotoxicity. Since lysosomal function is likely key to linking the dual cytoprotective and cytotoxic actions of autophagy, it is important to develop novel pharmacological agents that improve lysosomal function and restore autophagic flux. In this review, we first provide an overview of the autophagic‐lysosomal pathway, particularly focusing on stages of lysosomal degradation during autophagy. Then, we discuss the role of adaptive autophagy and autophagic stress based on lysosomal function. More importantly, we focus on the role of autophagic stress induced by lysosomal dysfunction according to the pathogenic factors (including high glucose, advanced glycation end products (AGEs), urinary protein, excessive reactive oxygen species (ROS) and lipid overload) in diabetic kidney disease (DKD), respectively. Finally, therapeutic possibilities aimed at lysosomal restoration in DKD are introduced.  相似文献   

8.
Avicins, a family of plant triterpene electrophiles, can trigger apoptosis-associated tumor cell death, and suppress chemical-induced carcinogenesis by its anti-inflammatory, anti-mutagenic, and antioxidant properties. Here, we show that tumor cells treated with benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-fluoro-methylketone, an apoptosis inhibitor, and Bax(-/-)Bak(-/-) apoptosis-resistant cells can still undergo cell death in response to avicin D treatment. We demonstrate that this non-apoptotic cell death is mediated by autophagy, which can be suppressed by chloroquine, an autophagy inhibitor, and by specific knockdown of autophagy-related gene-5 (Atg5) and Atg7. Avicin D decreases cellular ATP levels, stimulates the activation of AMP-activated protein kinase (AMPK), and inhibits mammalian target of rapamycin (mTOR) and S6 kinase activity. Suppression of AMPK by compound C and dominant-negative AMPK decreases avicin D-induced autophagic cell death. Furthermore, avicin D-induced autophagic cell death can be abrogated by knockdown of tuberous sclerosis complex 2 (TSC2), a key mediator linking AMPK to mTOR inhibition, suggesting that AMPK activation is a crucial event targeted by avicin D. These findings indicate the therapeutic potential of avicins by triggering autophagic cell death.  相似文献   

9.
10.
《Autophagy》2013,9(7):940-943
Autophagy has recently been recognized as an important cellular response to stress. However, the prospect of manipulating the autophagic process for the enhancement of cancer therapy remains unresolved. This lack of resolution stems from the current controversy regarding the fundamental function of autophagy in tumor stress response: Does it have a positive or negative impact on tumor survival capability? Our studies were designed to investigate the role of autophagy in the response to TRAIL of tumor cells with various apoptotic defects. Based on our findings, we propose that divergent mechanisms of resistance to TRAIL can be reversed by a common approach of targeting specific components of the autophagic process for inhibition. This concept may have significant implications for the development of new strategies to circumvent TRAIL resistance in tumors.

Addendum to: Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM, Rabinowich H. Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 2008; 283:19665-77.  相似文献   

11.
Glioblastoma multiforme (GBM) is the most aggressive and common brain tumor in adults. Sorafenib, a multi-kinase inhibitor, has been shown to inhibit cell proliferation and induce apoptosis through inhibition of STAT3 signaling in glioblastoma cells and in intracranial gliomas. However, sorafenib also induces cell autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the therapeutic effect of sorafenib on glioblastoma is uncertain. Here, we combined sorafenib treatment in GBM cells (U373 and LN229) and tumors with the autophagy inhibitor chloroquine. We found that blockage of autophagy further inhibited cell proliferation and migration and induced cell apoptosis in vitro and in vivo. These findings suggest the possibility of combination treatment with sorafenib and autophagy inhibitors for GBM.  相似文献   

12.
Apoptosis (type I) and autophagy (type II) are both highly regulated forms of programmed cell death and play crucial roles in physiological processes such as the development, homeostasis and selective, moderate to massive elimination of cells, if needed. Accumulating evidence suggests that cancer cells, including pancreatic cancer cells, in general tend to have reduced autophagy relative to their normal counterparts and premalignant lesions, supporting the contention that defective autophagy provides resistance to metabolic stress such as hypoxia, acidity and chemotherapeutics, promotes tumor cell survival and plays a role in the process of tumorigenesis. However, the mechanisms underlying the reduced capability of undergoing autophagy in pancreatic cancer remain elusive. In a recent study, we demonstrated a novel mechanism for regulation of autophagy in pancreatic ductal carcinoma cells. We found that protein kinase C-delta (PKC delta) constitutively suppresses autophagy through induction of tissue transglutaminase (TG2). Inhibition of PKC delta/TG2 signaling resulted in significant autophagic cell death that was mediated by Beclin 1. Elevated expression of TG2 in pancreatic cancer cells has been implicated in the development of drug resistance, metastatic phenotype and poor patient prognosis. In conclusion, our data suggest a novel role of PKC delta/TG2 in regulation of autophagy, and that TG2 may serve as an excellent therapeutic target in pancreatic cancer cells.  相似文献   

13.
Autophagy is a mechanism of protection against various forms of human diseases, such as cancer, in which autophagy seems to have an extremely complex role. In cancer, there is evidence that autophagy may be oncogenic in some contexts, whereas in others it clearly contributes to tumor suppression. In addition, studies have demonstrated the existence of a complex relationship between autophagy and cell death, determining whether a cell will live or die in response to anticancer therapies. Nevertheless, we still need to complete the autophagy–apoptosis puzzle in the tumor context to better address appropriate chemotherapy protocols with autophagy modulators. Generally, tumor cell resistance to anticancer induced-apoptosis can be overcome by autophagy inhibition. However, when an extensive autophagic stimulus is activated, autophagic cell death is observed. In this review, we discuss some details of autophagy and its relationship with tumor progression or suppression, as well as role of autophagy–apoptosis in cancer treatments.  相似文献   

14.
B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade in human cancers, making it an important therapeutic target. Here, we describe the differential effects of two Raf-targeting drugs, sorafenib and PLX4720, on multidrug-resistant v-Ha-ras-transformed cells (Ras-NIH 3T3/Mdr). We demonstrate that the growth of the NIH 3T3/Mdr cell line was affected in a dose-dependent manner more significantly by the pan-Raf inhibitor sorafenib than by the selective mutant B-Raf inhibitor PLX4720. Despite their differential effects on LKB1/AMPK phosphorylation, both sorafenib and PLX4720 inhibited downstream mTOR signaling with concomitant induction of autophagy, implying that the differential effects of sorafenib and PLX4720 on multidrug-resistant cells might not be due to different levels of autophagy and apoptosis. Interestingly, sorafenib caused a dose-dependent increase in rhodamine 123 uptake and retention. More importantly, sorafenib reversed the resistance to paclitaxel in Ras-NIH 3T3/Mdr cells. Moreover, MEK/ERK signaling was hyperactivated by the selective mutant B-Raf inhibitor PLX4720 and inhibited by the pan-Raf inhibitor sorafenib. Our data suggest that sorafenib sensitivity in MDR cells is mediated through the inhibition of P-glycoprotein activity following strong inhibition of Raf/MEK/ERK signaling. Thus, Raf inhibition with sorafenib might be a promising approach to abrogate the multidrug resistance of cancer cells.  相似文献   

15.
Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer.  相似文献   

16.
Multicellular tumor spheroids represent a 3D in vitro model that mimics solid tumor essential properties including assembly and development of extracellular matrix and nutrient, oxygen and proliferation gradients. In the present study, we analyze the impact of 3D spatial organization of HER2-overexpressing breast cancer cells on the response to Trastuzumab. We cultured human mammary adenocarcinoma cell lines as spheroids with the hanging drop method and we observed a gradient of proliferating, quiescent, hypoxic, apoptotic and autophagic cells towards the inner core. This 3D organization decreased Trastuzumab sensitivity of HER2 over-expressing cells compared to monolayer cell cultures. We did not observe apoptosis induced by Trastuzumab but found cell arrest in G0/G1 phase. Moreover, the treatment downregulated the basal apoptosis only found in tumor spheroids, by eliciting protective autophagy. We were able to increase sensitivity to Trastuzumab by autophagy inhibition, thus exposing the interaction between apoptosis and autophagy. We confirmed this result by developing a resistant cell line that was more sensitive to autophagy inhibition than the parental BT474 cells. In summary, the development of Trastuzumab resistance relies on the balance between death and survival mechanisms, characteristic of 3D cell organization. We propose the use of spheroids to further improve the understanding of Trastuzumab antitumor activity and overcome resistance.  相似文献   

17.
We describe the STK38 protein kinase as a conserved regulator of autophagy. We discovered STK38 as a novel binding partner of Beclin1, a key regulator of autophagy. By combining molecular, cell biological and genetic approaches, we show that STK38 promotes autophagosome formation in human cells and in Drosophila. Furthermore, we also provide evidence demonstrating that STK38 with the small GTPase RalB, assist the co-ordination between autophagic and apoptotic events upon autophagy induction, hence proposing a role for STK38 in determining cellular fate in response to autophagic conditions.  相似文献   

18.
We have recently described that autophagic targeting of Src maintains cancer cell viability when FAK signalling is defective. Here, we show that the Ret tyrosine kinase is also degraded by autophagy in cancer cells with altered/reduced FAK signalling, preventing its binding to FAK at integrin adhesions. Inhibition of autophagy restores Ret localization to focal adhesions. Importantly, Src kinase activity is required to target Ret to autophagosomes and enhance Ret degradation. Src is thus a general mediator of selective autophagic targeting of adhesion-linked kinases, and Ret a second FAK-binding tyrosine kinase degraded through autophagy in cancer cells under adhesion stress. Src-by controlling not only its own degradation but also that of other FAK-binding partners-allows cancer cell survival, suggesting a new therapeutic strategy.  相似文献   

19.
《Autophagy》2013,9(5):480-483
Apoptosis (type I) and autophagy (type II) are both highly regulated forms of programmed cell death and play crucial roles in physiological processes such as the development, homeostasis and selective, moderate to massive elimination of cells, if needed. Accumulating evidence suggests that cancer cells, including pancreatic cancer cells, in general tend to have reduced autophagy relative to their normal counterparts and premalignant lesions, supporting the contention that defective autophagy provides resistance to metabolic stress such as hypoxia, acidity and chemotherapeutics, promotes tumor cell survival and plays a role in the process of tumorigenesis. However, the mechanisms underlying the reduced capability of undergoing autophagy in pancreatic cancer remain elusive. In a recent study, we demonstrated a novel mechanism for regulation of autophagy in pancreatic ductal carcinoma cells. We found that protein kinase C-delta (PKCδ) constitutively suppresses autophagy through induction of tissue transglutaminase (TG2). Inhibition of PKCδ/TG2 signaling resulted in significant autophagic cell death that was mediated by Beclin 1. Elevated expression of TG2 in pancreatic cancer cells has been implicated in the development of drug resistance, metastatic phenotype and poor patient prognosis. In conclusion, our data suggest a novel role of PKCδ/TG2 in regulation of autophagy, and that TG2 may serve as an excellent therapeutic target in pancreatic cancer cells.

Addendum to:

Tissue Transglutaminase Inhibits Autophagy in Pancreatic Cancer Cells

U. Akar, B. Ozpolat, K. Mehta, J. Fok, Y. Kondo and G. Lopez-Berestein

Mol Cancer Res 2007; 5:241-9  相似文献   

20.
The multikinase inhibitor, sorafenib (Nexavar®, BAY43-9006), which inhibits both the Raf/MEK/ERK pathway and several receptor tyrosine kinases (RTKs), has shown significantly therapeutic benefits in advanced hepatocellular carcinoma (HCC). However, not all HCC patients respond to sorafenib well and new therapeutic strategies to optimize the efficacy of sorafenib are urgently required. Overexpression of breast cancer resistance protein (BCRP/ABCG2) mediates the drug-efflux of several tyrosine kinase inhibitors (TKIs) to attenuate their efficacy. This study aimed to investigate the role of BCRP/ABCG2 in the sensitivity of HCC to sorafenib. Our data showed that BCRP/ABCG2 mediated the efflux of sorafenib. Co-treatment with a BCRP/ABCG2 inhibitor greatly augmented the cytotoxicity of sorafenib in HCC cells. Similar results were also achieved by the competitive inhibitor of BCRP/ABCG2, gefitinib, in combination with sorafenib. These results suggest not only that BCRP/ABCG2 is a potential predictor for the sorafenib sensitivity in HCC, but also that blockage of BCRP/ABCG2 may be a potential strategy to increase the response of HCC cells to sorafenib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号