首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(6):591-596
Autophagy (macroautophagy) is an evolutionally conserved process by which cytoplasmic proteins and organelles are surrounded by unique double membranes and are subsequently degraded upon fusion with lysosomes. Many autophagy-related genes (Atg) have been identified in yeast; a ubiquitin-like Atg12-Atg5 system is also essential for the elongation of the isolation membrane in mammalian cells. Nevertheless, the regulation of autophagy in neurons remains largely unknown. In this study, we crossed conditional knockout mice Atg5flox/flox with pcp2-Cre transgenic mice, which express Cre recombinase through a Purkinje cell–specific promoter, pcp2. In Atg5flox/flox; pcp2-Cre mice, the Atg5 gene was excised as early as postnatal day 6; Purkinje cells started to degenerate after approximately 8 weeks, and the animals showed an ataxic gait from around 10 months. Initially, however, the Purkinje cells showed axonal swelling around its terminals from as early as 4 weeks after birth. An electron microscopic analysis revealed the accumulation of autophagosome-like double-membrane structures in the swollen regions, together with numerous membranous organelles, such as tubular or sheet-like smooth endoplasmic reticulum and vesicles. These results suggest that Atg5 plays important roles in the maintenance of axon morphology and membrane structures, and its loss of function leads to the swelling of axons, followed by progressive neurodegeneration in mammalian neurons.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, characterized by phosphorylated TDP-43 (pTDP-43)-positive inclusions in neurons and glial cells. However, the pathogenic mechanism that underlies ALS remains largely unknown. To investigate the effects of autophagy deficiency in the formation and spreading of pathological TDP-43 along corticospinal tract axons, TDP-43 preformed fibrils (PFFs) were prepared and unilaterally injected into the fifth layer of the left primary motor cortex (M1) or the left anterior horn of the seventh cervical spinal cord segment (C7) of Atg5+/- mice. After the injection of TDP-43 PFFs, the elevated levels of pTDP-43 were present in several pyramidal tract-associated regions of Atg5+/- mice. Additionally, the occurrence of spontaneous potentials detected by electromyography demonstrates evidence of lower motor neuron dysfunction in M1-TDP-43 PFFs-injected Atg5+/- mice, and prolonged central motor conduction time detected by motor evoked potentials provides evidence of upper motor neuron dysfunction in C7-TDP-43 PFFs-injected Atg5+/- mice. These results show that injection of TDP-43 PFFs into the M1 or C7 of Atg5+/- mice induces the spreading of pathological TDP-43 along corticospinal tract axons in both an anterograde and retrograde manner. Importantly, TDP-43 PFFs-injected Atg5+/- mice also display ALS-like motor dysfunction. Taken together, our findings provide direct evidence that TDP-43 PFFs-injected Atg5+/- mice exhibited ALS-like neuropathology and motor phenotypes, suggesting that autophagy deficiency promotes the formation and spreading of pathological TDP-43 in vivo.  相似文献   

3.
The molecular basis of chronic morphine exposure remains unknown. In this study, we hypothesized that macroautophagy/autophagy of dopaminergic neurons would mediate the alterations of neuronal dendritic morphology and behavioral responses induced by morphine. Chronic morphine exposure caused Atg5 (autophagy-related 5)- and Atg7 (autophagy-related 7)-dependent and dopaminergic neuron-specific autophagy resulting in decreased neuron dendritic spines and the onset of addictive behaviors. In cultured primary midbrain neurons, morphine treatment significantly reduced total dendritic length and complexity, and this effect could be reversed by knockdown of Atg5 or Atg7. Mice deficient for Atg5 or Atg7 specifically in the dopaminergic neurons were less sensitive to developing a morphine reward response, behavioral sensitization, analgesic tolerance and physical dependence compared to wild-type mice. Taken together, our findings suggested that the Atg5- and Atg7-dependent autophagy of dopaminergic neurons contributed to cellular and behavioral responses to morphine and may have implications for the future treatment of drug addiction.  相似文献   

4.
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane‐bound vesicles termed autophagosomes. The conserved Atg5–Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5–Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5–Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre‐autophagosomal structure but is essential for autophagy and cytoplasm‐to‐vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5–Atg12/Atg16 complex during autophagosome formation.  相似文献   

5.
《Autophagy》2013,9(3):315-321
Despite of the increasing evidence that oxidative stress may induce non-apoptotic cell death or autophagic cell death, the mechanism of this process is unclear. Here, we report a role and a down-stream molecular event of Atg5 during oxidative stress-induced cell death. Compared to wild type (WT) cells, Atg5-deficient mouse embryo fibroblasts (Atg5-/- MEFs) and Atg5 knockdown HT22 neuronal cells were more resistant to cell death induced by H2O2. On the contrary, Atg5-/- MEFs were as sensitive to tumor necrosis factor (TNF)-α and cycloheximide as WT cells, and were more sensitive to cell death triggered by amino acid-deprivation than WT MEFs. Treatment with H2O2 induced the recruitment of a GFP-LC3 fusion protein and conversion of LC3 I to LC3 II, correlated with the extent of autophagosome formation in WT cells, but much less in Atg5-deficient cells. Among stress kinases, ERK1/2 was markedly activated in Atg5-/- MEFs and Atg5 knockdown HT22 and SH-SY5Y neuronal cells. The inhibition of ERK1/2 by MEK1 inhibitor (PD98059) or dominant negative ERK2 enhanced the susceptibility of Atg5-/- MEFs to H2O2-induced cell death. Further, reconstitution of Atg5 sensitized Atg5-/- MEFs to H2O2 and suppressed the activation of ERK1/2. These results suggest that the inhibitory effect of Atg5 deficiency on cell death is attributable by the compensatory activation of ERK1/2 in Atg5-/- MEFs during oxidative stress-induced cell death.  相似文献   

6.
ObjectiveHypertension induces end-organ damage through inflammation, and autophagy plays a crucial role in the regulation of cellular homeostasis. In the present study, we aimed to define the role of autophagy in the development of inflammation and cardiac injury induced by angiotensin II (Ang II).Methods and ResultsAutophagy protein 5 (Atg5) haplodeficiency (Atg5+/−) and age-matched wild-type (WT) C57BL/6 J mice were infused with Ang II (1500 ng/kg/min) or saline for 7 days. Heart sections were stained with hematoxylin and eosin (H&E), Masson's trichrome, and immunohistochemical stains. Cytokine and LC3 levels were measured using real-time PCR or western blot analysis. After Ang II infusion, the WT mice exhibited marked macrophage accumulation, cytokine expression, and reactive oxygen species (ROS) production compared with saline-infused controls. However, these effects induced by Ang II infusion were aggravated in Atg5+/− mice. These effects were associated with Atg5-mediated impaired autophagy, accompanied by increased production of ROS and activation of nuclear factor-κB (NF-κB) in macrophages. Finally, increased cardiac inflammation in Atg5 haplodeficient mice was associated with increased cardiac fibrosis.ConclusionAtg5 deficiency-mediated autophagy increases ROS production and NF-κB activity in macrophages, thereby contributing to cardiac inflammation and injury. Thus, improving autophagy may be a novel therapeutic strategy to ameliorate hypertension-induced inflammation and organ damage.  相似文献   

7.
The autophagy-related proteins ATG12 and ATG5 form a covalent complex essential for autophagy. Here, we demonstrate that ATG12 has distinct functions from ATG5 in pro-opiomelanocortin (POMC)-expressing neurons. Upon high-fat diet (HFD) consumption, mice lacking Atg12 in POMC-positive neurons exhibit accelerated weight gain, adiposity, and glucose intolerance, which is associated with increased food intake, reduced ambulation, and decreased LEP/leptin sensitivity. Importantly, although genetic deletion of either Atg12 or Atg5 renders POMC neurons autophagy-deficient, mice lacking Atg5 in POMC neurons do not exhibit these phenotypes. Hence, we propose nonautophagic functions for ATG12 in POMC neurons that counteract excessive weight gain in response to HFD consumption.  相似文献   

8.
9.
《Autophagy》2013,9(3):453-467
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

10.
During autophagy, the transmembrane protein Atg27 facilitates transport of the major autophagy membrane protein Atg9 to the preautophagosomal structure (PAS). To better understand the function of Atg27 and its relationship with Atg9, Atg27 trafficking and localization were examined. Atg27 localized to endosomes and the vacuolar membrane, in addition to previously described PAS, Golgi and Atg9‐positive structures. Atg27 vacuolar membrane localization was dependent on the adaptor AP‐3, which mediates direct transport from the trans‐Golgi to the vacuole. The four C‐terminal amino acids (YSAV) of Atg27 comprise a tyrosine sorting motif. Mutation of the YSAV abrogated Atg27 transport to the vacuolar membrane and affected its distribution in TGN/endosomal compartments, while PAS localization was normal. Also, in atg27(ΔYSAV) or AP‐3 mutants, accumulation of Atg9 in the vacuolar lumen was observed upon autophagy induction. Nevertheless, PAS localization of Atg9 was normal in atg27(ΔYSAV) cells. The vacuole lumen localization of Atg9 was dependent on transport through the multivesicular body, as Atg9 accumulated in the class E compartment and vacuole membrane in atg27(ΔYSAV) vps4Δ but not in ATG27 vps4Δ cells. We suggest that Atg27 has an additional role to retain Atg9 in endosomal reservoirs that can be mobilized during autophagy.   相似文献   

11.
Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12–Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.  相似文献   

12.
Atg9 is a conserved multipass transmembrane protein with an essential role in autophagy. In Saccharomyces cerevisiae, it travels through the secretory pathway to a unique compartment, the Atg9 peripheral structures. These structures are then targeted to the phagophore assembly site (PAS), where they are proposed to help deliver membrane to the forming autophagosome. We used ‘in vivo reconstitution’ of this process in a multiple‐knockout strain to define four proteins, Atg11, Atg19, Atg23 and Atg27, as the core minimal machinery necessary and sufficient for the trafficking of Atg9 to the PAS. Atg23 and Atg27 function in the formation of the Atg9 peripheral structures. Overexpression of Atg9 can bypass the need for Atg23, suggesting that the amount of Atg9 in each peripheral structure is a critical factor in their targeting to the PAS. In contrast, overexpression of Atg23 or Atg27 interferes with Atg9 trafficking, suggesting that these proteins must be present in the appropriate stoichiometry in order to function properly. These data allow us to resolve existing controversies regarding the role of Atg23 and Atg27, and propose a model that ties together previous observations regarding the role of Atg9 in autophagosome formation.   相似文献   

13.
《Autophagy》2013,9(2):187-199
Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of basal autophagy in neural differentiation. Here we report an increase in the expression of the autophagy genes Atg7, Becn1, Ambra1 and LC3 in vivo in the mouse embryonic olfactory bulb (OB) during the initial period of neuronal differentiation at E15.5, along with a parallel increase in neuronal markers. In addition, we observed an increase in LC3 lipidation and autophagic flux during neuronal differentiation in cultured OB-derived stem/progenitor cells. Pharmacological inhibition of autophagy with 3-MA or wortmannin markedly decreased neurogenesis. These observations were supported by similar findings in two autophagy-deficient genetic models. In Ambra1 loss-of-function homozygous mice (gt/gt) the expression of several neural markers was decreased in the OB at E13.5 in vivo. In vitro, Ambra1 haploinsufficient cells developed as small neurospheres with an impaired capacity for neuronal generation. The addition of methylpyruvate during stem/progenitor cell differentiation in culture largely reversed the inhibition of neurogenesis induced by either 3-MA or Ambra1 haploinsufficiency, suggesting that neural stem/progenitor cells activate autophagy to fulfill their high energy demands. Further supporting the role of autophagy for neuronal differentiation Atg5-null OB cells differentiating in culture displayed decreased TuJ1 levels and lower number of cells with neurites. These results reveal new roles for autophagy-related molecules Atg5 and Ambra1 during early neuronal differentiation of stem/progenitor cells.  相似文献   

14.
《Autophagy》2013,9(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

15.
Roswitha Krick 《Autophagy》2016,12(11):2260-2261
In Saccharomyces cerevisiae Atg8 coupled to phosphatidylethanolamine is a key component of autophagosome biogenesis. Atg21 binds via 2 sites at the circumference of its β-propeller to PtdIns3P at the phagophore assembly site (PAS). It recruits and arranges both Atg8 and Atg16, which is part of the E3-like ligase complex Atg12–Atg5-Atg16. Binding of Atg8 to Atg21 requires the FK-motif within the N-terminal-helical domain of Atg8 and D146 at the top of the Atg21 β-propeller. Atg16 binds via D101 and E102 within its coiled-coil domain to Atg21.  相似文献   

16.
Macroautophagy/autophagy is an evolutionarily conserved catabolic pathway whose modulation has been linked to diverse disease states, including age-associated disorders. Conventional and conditional whole-body knockout mouse models of key autophagy genes display perinatal death and lethal neurotoxicity, respectively, limiting their applications for in vivo studies. Here, we have developed an inducible shRNA mouse model targeting Atg5, allowing us to dynamically inhibit autophagy in vivo, termed ATG5i mice. The lack of brain-associated shRNA expression in this model circumvents the lethal phenotypes associated with complete autophagy knockouts. We show that ATG5i mice recapitulate many of the previously described phenotypes of tissue-specific knockouts. While restoration of autophagy in the liver rescues hepatomegaly and other pathologies associated with autophagy deficiency, this coincides with the development of hepatic fibrosis. These results highlight the need to consider the potential side effects of systemic anti-autophagy therapies.  相似文献   

17.
Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3‐interacting region (LIR) at the C‐terminus of the protein and a novel motif at the N‐terminus. Although both sites are important for Atg4–Atg8 interaction in vivo, only the new N‐terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE‐bound Atg8.  相似文献   

18.
19.
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

20.
Autophagy is an evolutionarily conserved lysosomal degradation pathway that plays important roles in cell maintenance, expansion and differentiation. Removal of genes essential for autophagy from embryonic neural stem and precursor cells reduces the survival and inhibits neuronal differentiation of adult-generated neurons. No study has modified autophagy within the adult precursor cells, leaving the cell-autonomous role of autophagy in adult neurogenesis unknown. Here we demonstrate that autophagic flux exists in the adult dividing progenitor cells and their progeny in the dentate gyrus. To investigate the role of autophagy in adult hippocampal neurogenesis, we genetically deleted Autophagy-related gene 5 (Atg5) that reduced autophagic flux and the survival of the progeny of dividing progenitor cells. This significant reduction in survival of adult-generated neurons is accompanied by a delay in neuronal maturation, including a transient reduction in spine density in the absence of a change in differentiation. The delay in cell maturation and loss of progeny of the Atg5-null cells was not present in mice that lacked the essential pro-apoptotic protein Bax (Bcl-2-associated X protein), suggesting that Atg5-deficient cells die through a Bax-dependent mechanism. In addition, there was a loss of Atg5-null cells following exposure to running, suggesting that Atg5 is required for running-induced increases in neurogenesis. These findings highlight the cell-autonomous requirement of Atg5 in the survival of adult-generated neurons.In the adult brain, neurogenesis allows for the continuous development of adult-generated neurons in response to physiological and pathological stimuli. The neural progenitor cells (NPCs) within the neurogenic niche of the subventricular zone (SVZ) and subgranular zone (SGZ) give rise to adult-generated neurons within the olfactory bulb and dentate, respectively.1, 2, 3 The ability of the NPCs to proliferate, differentiate and integrate into circuitry to modify behavior makes understanding these cells and the factors that regulate these processes critical to develop new therapies. This is especially important for a number of diseases such as neurodegenerative diseases including Parkinson''s and Huntington''s diseases that are associated with reduced adult neurogenesis, as well as regenerative medicine strategies for recovery after stroke.4, 5, 6Two groups have found that in vivo macroautophagy (hereafter referred to as autophagy) can regulate adult neurogenesis by examining the effect of deleting autophagy-related genes (Atgs). Yazdankhah et al.7 found that Ambra1 and Beclin1 heterozygous embryonic knockout mice have less proliferating NPCs in the SVZ and an associated reduction in neurogenesis in the olfactory bulb. Wang et al.8 found that conditional removal of FIP200 (focal adhesion kinase (FAK) family interacting protein of Mr 200 K, also known as ULK1, an Atg1 homologue-interacting protein) from embryonic NPCs progressively depletes the number of postnatal NPCs, as well as reduces neurogenesis and increases astrogenesis. In contrast in the embryo, Lv et al.9 showed that a specific knockdown of the Autophagy-related gene 5 (Atg5) increases proliferation and inhibits neuronal differentiation of embryonic NPCs during cortical development. These data suggest that embryonic and adult NPCs are altered when autophagy-related genes are deleted in the embryo. However, it remains unknown whether autophagy, independent of effects in the embryo, is directly required for NPCs and their progeny in the adult.Here we tested the functional role of autophagy specifically in the adult brain by removing Atg5 from dividing NPCs. We found that autophagic flux occurs in adult NPCs and that removal of Atg5 is associated with a reduction in autophagic flux. In addition, we find that Atg5-null cells have a significant reduction in survival, as well as a delay in neuronal maturation. The reduction in neurogenesis occurred in the absence of altering proliferation or cell lineage. Furthermore, removal of Bax (Bcl-2-associated X protein) restored neurogenesis in the absence of Atg5, implicating Bax functions downstream of Atg5 to regulate the survival of adult-generated neurons. Finally, we showed that Atg5-dependent signaling is required for running-induced increases in the survival of the adult developing NPCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号