首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the fetal lung, but during lung development it gradually disappears in cells of future alveolar spaces. Recent studies have implicated the CFTR in fluid transport by the adult alveolar epithelium, but its presence has not been demonstrated directly. This study re-evaluated CFTR expression and activity in the adult pulmonary epithelium by using freshly isolated rat alveolar type II (ATII) cells. CFTR mRNA was detected by semiquantitative polymerase chain reaction on the day of cell isolation but was rapidly reduced by 60% after 24 h of cell culture. This was paralleled by a similar decrease of surfactant protein A expression and alkaline phosphatase staining, markers of the ATII cell phenotype. CFTR expression increased significantly on day 4 in cells grown on filters at the air-liquid interface compared with cells submerged or grown on plastic. Significantly higher CFTR expression was detected in distal lung tissue compared with the trachea. The CFTR was also found at the protein level in Western blot experiments employing lysates of freshly isolated alveolar cells. Whole cell patch-clamp experiments revealed cAMP-stimulated, 5-nitro-2-(3-phenylpropylamino)-benzoate-sensitive Cl(-) conductance with a linear current-voltage relationship. In cell-attached membrane patches with 100 microM amiloride in pipette solution, forskolin stimulated channels of approximately 4 pS conductance. Our results indicate that 50-250 of functional CFTR Cl(-) channels occur in adult alveolar cells and could contribute to alveolar liquid homeostasis.  相似文献   

2.
The injection of placental stromal cells isolated from fetal human tissues (f-hPSC) was reported to indirectly induce tissue regeneration in different animal models. A procedure of f-hPSC isolation from fragments of both selected fresh or cryopreserved bulk placental neonate tissues is proposed, based on their high migratory potential,. The fragments of the desired fetal placental tissues are adhered to a culture dish by traces of diluted fibrin and covered with culture medium. Spontaneous migration of pure f-hPSC from the tissue fragments to the cell culture dishes is followed by their rapid expansion by numerous passages. The isolated f-hPSC express typical mesenchymal surface antigens, including CD29, CD105, CD166 and CD146, with negative expression of white blood cell lineage and endothelial cells markers. Optimal yields of f-hPSC cultures can also be obtained from tissue samples cryopreserved in medium composed of 10% dimethyl sulfoxide (M2SO) and 50% fetal calf serum. Slightly better yields are obtained with media supplemented with 1% human albumin. Medium with 5% M2SO and/or 0.25 mg/ml PEG yielded inferior results. The f-hPSC from fresh or cryopreserved tissues express similar cell markers and growth kinetics. The proposed isolation protocol may also be applied for high yield isolation of stromal cells from fresh and cryopreserved tissue of other organs.  相似文献   

3.
4.
Summary In the present study we describe the establishment of serial cultures of human bronchial epithelial cells derived from biopsies obtained by fiberoptic bronchoscopy. The cell cultures were initiated from small amounts of material (2 mm forceps biopsies) using either explants or epithelial cell suspensions in combination with a feeder-layer technique. The rate of cell proliferation and the number of passages (up to 8 passages) achieved were similar, irrespective of whether the explants or dissociated cells were used. To modulate the extent of differentiation, the bronchial epithelial cells were cultured either under submerged, low calcium (0.06 mM) (proliferating), normal calcium (1.6 mM) (differentiation enhancing) conditions, or at the air-liquid interface. Characterization of the bronchial epithelial cell cultures was assessed on the basis of cell morphology, cytokeratin expression, and ciliary activity. The cells cultured under submerged conditions formed a multilayer consisting of maximally three layers of polygonal-shaped, small cuboidal cells, an appearance resembling the basal cells in vivo. In the air-exposed cultures, the formed multilayer consisted of three to six layers exhibiting squamous metaplasia. The cytokeratin profile in cultured bronchial epithelial cells was similar in submerged and air-exposed cultures and comparable with the profile found in vivo. In addition to cytokeratins, vimentin was co-expressed in a fraction of the subcultured cells. The ciliary activity was observed in primary culture, irrespective of whether the culture had been established from explants or from dissociated cells. This activity was lost upon subculturing and it was not regained by prolongation of the culture period. In contrast to submerged cultures and despite the squamous metaplasia appearance, the cells showed a reappearance of cilia when cultured at the air-liquid interface. Human bronchial epithelial cell cultures can be a representative model for controlling the mechanisms of regulation of bronchial epithelial cell function.  相似文献   

5.
Alveolar type II (ATII) cells remain differentiated and express surfactant proteins when cultured at an air–liquid (A/L) interface. When cultured under submerged conditions, ATII cells dedifferentiate and change their gene expression profile. We have previously shown that gene expression under submerged conditions is regulated by hypoxia inducible factor (HIF) signaling due to focal hypoxia resulting from ATII cell metabolism. Herein, we sought to further define gene expression changes in ATII cells cultured under submerged conditions. We performed a genome wide microarray on RNA extracted from rat ATII cells cultured under submerged conditions for 24–48 h after switching from an A/L interface. We found significant alterations in gene expression, including upregulation of the HIF target genes stanniocalcin-1 (STC1), tyrosine hydroxylase (Th), enolase (Eno) 2, and matrix metalloproteinase (MMP) 13, and we verified upregulation of these genes by RT-PCR. Because STC1, a highly evolutionarily conserved glycoprotein with anti-inflammatory, anti-apoptotic, anti-oxidant, and wound healing properties, is widely expressed in the lung, we further explored the potential functions of STC1 in the alveolar epithelium. We found that STC1 was induced by hypoxia and HIF in rat ATII cells, and this induction occurred rapidly and reversibly. We also showed that recombinant human STC1 (rhSTC1) enhanced cell motility with extended lamellipodia formation in alveolar epithelial cell (AEC) monolayers but did not inhibit the oxidative damage induced by LPS. We also confirmed that STC1 was upregulated by hypoxia and HIF in human lung epithelial cells. In this study, we have found that several HIF target genes including STC1 are upregulated in AECs by a submerged condition, that STC1 is regulated by hypoxia and HIF, that this regulation is rapidly and reversibly, and that STC1 enhances wound healing moderately in AEC monolayers. However, STC1 did not inhibit oxidative damage in rat AECs stimulated by LPS in vitro. Therefore, alterations in gene expression by ATII cells under submerged conditions including STC1 were largely induced by hypoxia and HIF, which may be relevant to our understanding of the pathogenesis of various lung diseases in which the alveolar epithelium is exposed to relative hypoxia.  相似文献   

6.
Cell cultures from cryopreserved human lung tissue.   总被引:5,自引:0,他引:5  
To assess gene induction in primary human fibroblasts, we have developed a method for cryopreservation of lung biopsies in liquid nitrogen. Fresh biopsies (n = 10) were chopped into 5 x 5 mm pieces and transferred into an ice-cold freezing medium. Biopsies were kept on ice for 15 min, followed by further cooling of the tissue to -70 degrees C. With this method, lung biopsies were preserved for more than 1 year before they were used for generating cell cultures. There was no significant difference in the biological responsiveness of fibroblasts generated from immediately cultured lung biopsies compared with those from cryopreserved tissue. The doubling rate of fibroblasts from fresh tissue was 23.6 +/- 1.1 hr; compared to 23.5 +/- 1.5 hr for fibroblasts generated from cryopreserved tissue. PDGF-BB enhanced de novo synthesis of DNA 100 times, in both the immediately cultured fibroblasts and those generated from cryopreserved biopsies. Macrophages, dendritic cells and endothelial cells could also be recovered from cryopreserved lung tissue. This method permits long-term storage of lung tissue and the possibility of establishing primary cell lines from the same tissue at later times without appreciable changes in their cellular biological characteristics.  相似文献   

7.
A culture system has been designed in which enzymatically isolated oocyte-granulosa cell complexes from fresh and frozen-thawed ovine ovarian tissue can be grown to antral size in vitro. Oocyte-granulosa complexes ranging from 100 to 240 microns in diameter were dissected from stromal tissue and grown individually in serum-free medium for 30 days. Complexes < 190 microns generally excluded their oocytes or lost three-dimensional structure early in the culture period. In contrast, complexes isolated from fresh or frozen-thawed tissue and measuring 190-240 microns on the day of isolation formed antral cavities in 25 +/- 9% and 18 +/- 6% (mean +/- SEM) of cases, respectively. The effect of gonadotrophin supplementation to the culture medium was tested on frozen-thawed oocyte-granulosa cell complexes only. In cultures supplemented with both FSH and LH or FSH alone, there was no significant difference in the number of oocyte-granulosa cell complexes that formed antral cavities (18 +/- 7%). However, antrum formation was significantly less frequent in cultures lacking gonadotrophin stimulation (7 +/- 4%). All oocyte-granulosa cell complexes maintained a three-dimensional structure throughout culture and developed a functional P450 aromatase enzyme complex, as revealed by the induction of oestradiol production during 8 days of culture after antrum formation in serum-free medium containing testosterone. Oocytes recovered after 30 days of culture were viable and had increased in diameter from 78 +/- 2 microns on the day of isolation, to 131 +/- 3 microns at the end of culture. These results show that oocyte-granulosa cell complexes isolated from cryopreserved ovarian tissue can be grown to antral size in vitro with similar efficiency to those isolated from fresh tissue.  相似文献   

8.
Caveolae are omega-shaped invaginations of the plasmalemma possessing a cytoplasmic membrane protein coat of caveolin. Caveolae are present in the in vivo alveolar epithelial type I (ATI) lung cell, but absent in its progenitor, the alveolar epithelial type II (ATII) cell. In primary culture ATII cells grown on a plastic substratum acquire with time an ATI-"like" phenotype. We demonstrate that freshly isolated rat ATII cells lack caveolae and expression of caveolin-1 (a critical caveolae structural protein). As the ATII cells acquire an ATI-like phenotype in primary culture caveolin-1 expression increases, with caveolin-1 signal at 192 h postseeding up to 50-fold greater than at 60 h; caveolae were morphologically evident only after 132 h. When maintaining the differentiated ATII phenotype with time, i.e., culture upon collagen with an apical interface of air, a temporal increase in caveolin-1 expression was not observed, with only very faint signals evident even at 192 h postseeding; at no time did these cultures display caveolae. In late primary ATII cultures caveolin-1 expression and caveolae biogenesis occur as a function of in vitro transformation from the ATII to the ATI-like phenotype. The results have broad implications for the in vitro study of the role of caveolae and caveolin in alveolar epithelial cell biology.  相似文献   

9.
Summary Dispersed cells from both fresh and cryopreserved human insulinoma have been maintained in cell culture. Initial yield of viable cells was 50% for fresh and 25% for cryopreserved tissue. Viability of cells in culture was documented by increasing numbers of cells (doubling time approximately 5 d initially and 2 d at the sixth subculture for both fresh and cryopreserved tissue) and continued release of insulin over time (approximately 100 ng/ml per 105 cells at 10 d and 175 ng/ml per 105 cells at 30 d of culture for both fresh and cryopreserved tissue). Evidence that cells growing in culture were beta cells was provided by: (a) recovery of intracellular and extracellular immunoreactive insulin (IRI), (b) electron microscopic morphology, and (c) immunohistochemical staining. Cells from fresh insulinoma incubated with increasing concentrations of extracellular glucose released increasing amounts of IRI up to approximately 15 mM glucose, which paralleled changes in plasma insulin obtained during a preoperative glucose tolerance test. Under an Intergovernmental Personnel Act Exchange from the Department of Surgery, University of California, Davis, Sacramento Medical Center.  相似文献   

10.
In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial cells will enable investigators to address novel and important research questions by using organotypic experimental models that largely mimic the nasal epithelium in vivo.  相似文献   

11.
12.
Endothelial cells provide a useful research model in many areas of vascular biology. Since its first isolation 1, human umbilical vein endothelial cells (HUVECs) have shown to be convenient, easy to obtain and culture, and thus are the most widely studied endothelial cells. However, for research focused on processes like angiogenesis, permeability or many others, microvascular endothelial cells (ECs) are a much more physiologically relevant model to study 2. Furthermore, ECs isolated from knockout mice provide a useful tool for analysis of protein function ex vivo. Several approaches to isolate and culture microvascular ECs of different origin have been reported to date 3-7, but consistent isolation and culture of pure ECs is still a major technical problem in many laboratories. Here, we provide a step-by-step protocol on a reliable and relatively simple method of isolating and culturing mouse lung endothelial cells (MLECs). In this approach, lung tissue obtained from 6- to 8-day old pups is first cut into pieces, digested with collagenase/dispase (C/D) solution and dispersed mechanically into single-cell suspension. MLECS are purified from cell suspension using positive selection with anti-PECAM-1 antibody conjugated to Dynabeads using a Magnetic Particle Concentrator (MPC). Such purified cells are cultured on gelatin-coated tissue culture (TC) dishes until they become confluent. At that point, cells are further purified using Dynabeads coupled to anti-ICAM-2 antibody. MLECs obtained with this protocol exhibit a cobblestone phenotype, as visualized by phase-contrast light microscopy, and their endothelial phenotype has been confirmed using FACS analysis with anti-VE-cadherin 8 and anti-VEGFR2 9 antibodies and immunofluorescent staining of VE-cadherin. In our hands, this two-step isolation procedure consistently and reliably yields a pure population of MLECs, which can be further cultured. This method will enable researchers to take advantage of the growing number of knockout and transgenic mice to directly correlate in vivo studies with results of in vitro experiments performed on isolated MLECs and thus help to reveal molecular mechanisms of vascular phenotypes observed in vivo.  相似文献   

13.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

14.
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/β-catenin pathway in IPF. The potential impact of WNT/β-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/β-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16–24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/β-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/β-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/β-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/β-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/β-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.  相似文献   

15.
In the present study, culture conditions that promote the growth and differentiation of manatee respiratory tract epithelial cells toward a mucociliary phenotype were determined. Characterization of a manatee-specific cell line enables investigators to conduct in vitro testing where live-animal experimentation is not possible. Cell cultures were established from both explants and enzymatically dissociated cells that were isolated from manatee bronchial tissue. To modulate their differentiation, bronchial epithelial cells were grown on Transwell collagen membranes either submerged or at an air-liquid interface. Growth on a collagen membrane at an air-liquid interface and medium supplemented with retinoic acid was required to promote a mucociliary phenotype. When cells were grown in submerged cultures without retinoic acid, they appeared more squamous and were not ciliated. Intracellular keratin proteins were detected in both submerged and interface cultures. Cultured manatee bronchial epithelial cells will facilitate future studies to investigate their potential role in pulmonary disease associated with brevetoxicosis after exposure to the red-tide organism, Karenia brevis.  相似文献   

16.
Choi J  Lee B  Lee E  Yoon BK  Bae D  Choi D 《Cryobiology》2008,56(1):36-42
Cryopreservation of ovarian tissue has been reported to delay the development of preantral follicles during in vitro culture, but the mechanism causing this impairment has not been brought to light. In order to elucidate the underlying mechanism of delayed follicular development, we evaluated the effects of cryopreservation on the proliferation of granulosa cells during culture of mouse preantral follicles, as a sufficient population of granulosa cells is critical for normal follicular development. Additionally the initial cell death of granulosa cells was estimated immediately after cryopreservation. The ovarian tissues obtained from 12-day-old female mice were cryopreservation by vitrification. The granulosa cell proliferation was evaluated by measuring the PCNA expression and the expression of cell cycle regulators such as cyclin D2, CDK4, cyclin E and CDK2 in preantral follicles isolated from fresh and cryopreserved ovarian tissues that were cultured for 48 h. The viability of granulosa cells was evaluated by measuring the proportion of necrotic areas. The granulosa cell proliferation of the cryopreserved preantral follicles was decreased significantly compared to that of the fresh controls at 0 and 24 h after culture (P < 0.05), and this was increased to the control levels after 48 h of culture. The expressions of cyclin D2, Cdk 4, cyclin E and Cdk2 were also decreased in the cryopreserved ovarian tissues at 0 and 24 h after culture (P < 0.05), but they were increased to the control levels after 48 h of culture. The proportion of the necrotic area was significantly higher in cryopreserved preantral follicles compared to that of the fresh preantral follicles (P < 0.05). This suggests that cryopreservation of ovarian tissues may delay the preantral follicle development by temporary suppressing the granulosa cell proliferation through the cell cycle regulators (cyclin D2, Cdk4, cyclin E and Cdk2) and by granulosa cell death immediately after warming.  相似文献   

17.
Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions.  相似文献   

18.
We previously reported the identification of TUSC1 (Tumor Suppressor Candidate 1), as a novel intronless gene isolated from a region of homozygous deletion at D9S126 on chromosome 9p in human lung cancer. In this study, we examine the differential expression of TUSC1 in human lung cancer cell lines by western blot and in a primary human lung cancer tissue microarray by immunohistochemical analysis. We also tested the functional activities and mechanisms of TUSC1 as a tumor suppressor gene through growth suppression in vitro and in vivo. The results showed no expression of TUSC1 in TUSC1 homozygously deleted cells and diminished expression in some tumor cell lines without TUSC1 deletion. Interestingly, the results from a primary human lung cancer tissue microarray suggested that higher expression of TUSC1 was correlated with increased survival times for lung cancer patients. Our data demonstrated that growth curves of tumor cell lines transfected with TUSC1 grew slower in vitro than those transfected with the empty vector. More importantly, xenograph tumors in nude mice grew significantly slower in vivo in cells stably transfected with TUSC1 than those transfected with empty vector. In addition, results from confocal microscopy and immunohistochemical analyses show distribution of TUSC1 in the cytoplasm and nucleus in tumor cell lines and in normal and tumor cells in the lung cancer tissue microarray. Taken together, our results support TUSC1 has tumor suppressor activity as a candidate tumor suppressor gene located on chromosome 9p.  相似文献   

19.
《Cytotherapy》2020,22(10):581-591
Background aimsUmbilical cord (UC) tissue is recognized as an advantageous source of mesenchymal stromal cells (MSCs), whose therapeutic properties are being actively evaluated in pre-clinical and clinical trials. In recognition of its potential value, storage of UC tissue or cells from UC tissue in newborn stem cell banks is now commonplace; however, strategies for isolating UC-derived MSCs (UCMSCs) from UC tissue have not been standardized. The majority of newborn stem cell banks take one of two approaches to cord tissue processing and cryopreservation: enzymatic digestion of the fresh tissue with cryopreservation of the subsequent cell suspension or cryopreservation of the tissue as a composite whole with later, post-thaw isolation of cells by explantation. Evaluation of UCMSCs derived by these two principal preparation and cryopreservation strategies is important to understanding whether the methods currently employed by newborn stem cell banks retain the desirable clinical attributes of UC cells.MethodsUCMSCs were isolated from 10 UC tissue samples by both explantation and enzymatic digestion methods to allow for comparison of cells from the same donor. Cell isolates from both methods were compared pre- and post-cryopreservation as well as after serial passaging. Cell viability, morphology, growth kinetics, immunophenotype, cytokine secretion and differentiation capacity were evaluated.ResultsUCMSCs could be derived from fresh UC tissue by both explantation and digestion methods and from thawed UC tissue by explantation. Initial cell populations isolated by digestion were heterogeneous and took longer to enrich for UCMSCs in culture than populations obtained by explantation. However, once isolated and enriched, UCMSCs obtained by either method showed no significant difference in viability, morphology, rate of proliferation, surface marker expression, levels of cytokine secretion or differentiation capacity.ConclusionsDerivation of UCMSCs by explantation after thawing UC cryopreserved as a composite tissue may be favorable in terms of initial purity and number of cells achievable by a specific passage. However, we observed no evidence of functional difference between UCMSCs derived by explanation or digestion, suggesting that cells isolated from cryopreserved material obtained by either method maintain their therapeutic properties.  相似文献   

20.
Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号