首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Autophagy is an efficient way of degradation and removal of unwanted or damaged intracellular components in plant cells. It plays an important role in recycling of intracellular structures (during starvation, removal of cell components formed during plant development or damaged by various stress factors) and in programmed cell death. Morphologically, autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which are essential for the isolation and degradation of cytoplasmic components. Among autophagic (ATG) proteins, ATG8 from the ubiquitinlike protein family plays a key role in autophagosome formation. ATG8 is also involved in selective autophagy, fusion of autophagosome with the vacuole, and some other intracellular processes not associated with autophagy. In contrast to yeasts that carry a single ATG8 gene, plants have multigene ATG8 families. The reason for such great ATG8 diversity in plants remains unclear. It is also unknown whether all members of the ATG8 family are involved in the formation and functioning of autophagosomes. To answer these questions, the identification of the structure and the possible functions of plant proteins from ATG8 family is required. In this review, we analyze the structures of ATG8 proteins from plants and their homologs from yeast and animal cells, interactions of ATG8 proteins with functional ligands, and involvement of ATG8 proteins in different metabolic processes in eukaryotes.  相似文献   

2.
自噬(autophagy)是真核生物细胞通过形成自噬体,回收利用胞内物质,维持细胞健康的高通量亚细胞降解途径。随着酵母和动物自噬研究的深入,植物自噬也受到越来越多的关注。近期的研究揭示了植物自噬的基本机制及其生理意义,也发现了植物特有的自噬形式与自噬相关基因。该文主要综述了自噬在植物碳、氮营养中的作用。  相似文献   

3.
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

4.
Autophagy is a process that is thought to occur in all eukaryotes in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon induction of autophagy, double membrane-bound structures called autophagosomes engulf portions of the cytoplasm and transfer them to the vacuole or lysosome for degradation. In this study, we have characterized two potential markers for autophagy in plants, the fluorescent dye monodansylcadaverine (MDC) and a green fluorescent protein (GFP)-AtATG8e fusion protein, and propose that they both label autophagosomes in Arabidopsis. Both markers label the same small, apparently membrane-bound structures found in cells under conditions that are known to induce autophagy such as starvation and senescence. They are usually seen in the cytoplasm, but occasionally can be observed within the vacuole, consistent with a function in the transfer of cytoplasmic material into the vacuole for degradation. MDC-staining and the GFP-AtATG8e fusion protein can now be used as very effective tools to complement biochemical and genetic approaches to the study of autophagy in plant systems.  相似文献   

5.
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.  相似文献   

6.
《Autophagy》2013,9(10):1702-1711
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

7.
Autophagy is a highly conserved processing mechanism in eukaryotes whereby cytoplasmic components are engulfed in double-membrane vesicles called autophagosomes and are delivered into organelles such as lysosomes (mammal) or vacuoles (yeast/plant) for degradation and recycling of the resulting molecules. Isolation of yeastAUTOPHAGY (ATG) genes has facilitated the identification of correspondingArabidopsis ATG genes based on sequence similarity. Genetic and molecular analyses using knockout and/or knockdown mutants of those genes have unraveled the biological functions of autophagy during plant development, nutrient recycling, and environmental stress responses. Additional roles for autophagy have been suggested in the degradation of oxidized proteins during oxidative stress and the regulation of hypersensitive response (HR)-programmed cell death (PCD) during innate immunity. Our review summarizes knowledge about the structure and function of autophagic pathways andATG components, and the biological roles of autophagy in plants.  相似文献   

8.
The tracheary elements (TEs) of the xylem serve as the water‐conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic. However, little evidence of autophagy in TE differentiation has been provided. The present study demonstrates that the small GTP binding protein RabG3b plays a role in TE differentiation through its function in autophagy. Differentiating wild type TE cells were found to undergo autophagy in an Arabidopsis culture system. Both autophagy and TE formation were significantly stimulated by overexpression of a constitutively active mutant (RabG3bCA), and were inhibited in transgenic plants overexpressing a dominant negative mutant (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid insensitive mutant bri1‐301, and an autophagy mutant atg5‐1. Taken together, our results suggest that autophagy occurs during TE differentiation, and that RabG3b, as a component of autophagy, regulates TE differentiation.  相似文献   

9.
Autophagy is an evolutionarily conserved process leading to the degradation of intracellular components in eukaryotes, which is important for nutrient recycling especially in response to starvation conditions. Nutrient recycling is an essential process that underpins productivity in crop plants, such that remobilized nitrogen derived from older organs supports the formation of new organs or grain-filling within a plant. We extended our understanding of autophagy in a model plant, Arabidopsis thaliana, to an important cereal, rice (Oryza sativa). Through analysis of transgenic rice plants stably expressing fluorescent marker proteins for autophagy or chloroplast stroma, we revealed that chloroplast proteins are partially degraded in the vacuole via Rubisco-containing bodies (RCBs), a type of autophagosomes containing stroma. We further reported evidence that the RCB pathway functions during natural leaf senescence to facilitate subsequent nitrogen remobilization into newly expanding leaves. Thus, our recent studies establish the importance of autophagy in biomass production of cereals.  相似文献   

10.
自噬是亚细胞膜结构发生动态变化并经溶酶体介导的细胞内蛋白质和细胞器降解的过程。通过平衡细胞内的合成和分解代谢,自噬可以维持细胞内环境稳态。干细胞是具有自我更新能力和多向分化潜能的细胞,对组织器官再生和维持组织稳态有重要作用。近年的研究表明,自噬在维持干细胞功能方面有非常重要的作用,本文综述了自噬的形成过程和分子机制及其在发育及干细胞中的作用。  相似文献   

11.
Autophagy is a conserved self-cleaning and renewal system required for cellular homeostasis and stress tolerance. Autophagic processes are also implicated in the response to ‘non-self’ such as viral pathogens, yet the functions and mechanisms of autophagy during plant virus infection have only recently started to be revealed. Compelling evidence now indicates that autophagy is an integral part of antiviral immunity in plants. It can promote the hypersensitive cell death response upon incompatible viral infections or mediate the selective elimination of entire particles and individual proteins from compatible viruses in a pathway similar to xenophagy in animals. Several viruses, however, have evolved measures to antagonize xenophagic degradation or utilize autophagy to suppress disease-associated cell death and other defence pathways like RNA silencing. Here, we highlight the current advances and gaps in our understanding of the complex autophagy–virus interplay and its consequences for host immunity and viral pathogenesis in plants.  相似文献   

12.
Autophagy is a major intracellular process for the degradation of cytosolic macromolecules and organelles in the lysosomes or vacuoles for the purposes of regulating cellular homeostasis and protein and organelle quality control. In complex metazoan organisms, autophagy is highly engaged during the immune responses through interfaces either directly with intracellular pathogens or indirectly with immune signalling molecules. Studies over the last decade or so have also revealed a number of important ways in which autophagy shapes plant innate immune responses. First, autophagy promotes defence‐associated hypersensitive cell death induced by avirulent or related pathogens, but restricts unnecessary or disease‐associated spread of cell death. This elaborate regulation of plant host cell death by autophagy is critical during plant immune responses to the types of plant pathogens that induce cell death, which include avirulent biotrophic pathogens and necrotrophic pathogens. Second, autophagy modulates defence responses regulated by salicylic acid and jasmonic acid, thereby influencing plant basal resistance to both biotrophic and necrotrophic pathogens. Third, there is an emerging role of autophagy in virus‐induced RNA silencing, either as an antiviral collaborator for targeted degradation of viral RNA silencing suppressors or an accomplice of viral RNA silencing suppressors for targeted degradation of key components of plant cellular RNA silencing machinery. In this review, we summarize this important progress and discuss the potential significance of the perplexing role of autophagy in plant innate immunity.  相似文献   

13.
《Autophagy》2013,9(5):717-718
Germline P granules are specialized protein/RNA aggregates that are found exclusively in germ cells in C. elegans. During the early embryonic divisions that generate germ blastomeres, aggregate-prone P granule components PGL-1 and PGL-3 that remain in the cytoplasm destined for somatic daughters are selectively removed by autophagy. Loss-of-function of components of the autophagy pathway, including the VPS-34/BEC-1 complex, causes accumulation of PGL-1 and PGL-3 into aggregates in somatic cells (termed PGL granules). Formation of PGL granules depends on SEPA-1, which is an integral component of these granules. SEPA-1 is preferentially degraded by autophagy and is also required for the autophagic degradation of PGL-1 and PGL-3. SEPA-1 functions as a bridging molecule in mediating degradation of P granule components by directly interacting with PGL-3 and also with the autophagy protein LGG-1/Atg8. The defect in embryonic development in autophagy mutants is suppressed by mutation of sepa-1, suggesting that autophagic degradation of PGL granule components may provide nutrients for embryogenesis and/or also prevent the formation of aggregates that could be toxic for animal development. Our study reveals a specific physiological function of selective autophagic degradation during C. elegans development.  相似文献   

14.
Yan Wang  Yule Liu 《Autophagy》2013,9(8):1247-1248
Autophagy is an evolutionarily conserved process in eukaryotic cells that functions to degrade cytoplasmic components in the vacuole or lysosome. Previous research indicates that the core molecular machinery of autophagosome formation works well in plants, and plant autophagy plays roles in diverse biological processes such as nutrient recycling, development, immunity and responses to a variety of abiotic stresses. Recently, we reported that autophagy contributed to leaf starch degradation, which had been thought to be a process confined to chloroplasts. This finding demonstrated a previously unidentified pathway of leaf starch depletion and a new role of basal autophagy in plants.  相似文献   

15.
During Chinese hamster ovary (CHO) cell culture for foreign protein production, cells are subjected to programmed cell death (PCD). A rapid death at the end of batch culture is accelerated by nutrient starvation. In this study, type II PCD, autophagy, as well as type I PCD, apoptosis, was found to take place in two antibody-producing CHO cell lines, Ab1 and Ab2, toward the end of batch culture when glucose and glutamine were limiting. The evidence of autophagy was observed from the accumulation of a common autophagic marker, a 16 kDa form of LC3-II during batch culture. Moreover, a significant percentage of the total cells (80% of Ab1 cells and 86% of Ab2 cells) showed autophagic vacuoles containing cytoplasmic material by transmission electron microscopy. An increased level of PARP cleavage and chromosomal DNA fragmentation supported that starvation-induced apoptosis also occurred simultaneously with autophagy.  相似文献   

16.
Autophagy is a lysosome‐mediated degradation pathway used by eukaryotes to recycle cytosolic components in both basal and stress conditions. Several genes have been described as regulators of autophagy, many of them being evolutionarily conserved from yeast to mammals. The study of autophagy‐defective model systems has made it possible to highlight the importance of correctly functioning autophagic machinery in the development of invertebrates as, for example, during the complex events of fly and worm metamorphosis. In vertebrates, on the other hand, autophagy defects can be lethal for the animal if the mutated gene is involved in the early stages of development, or can lead to severe phenotypes if the mutation affects later stages. However, in both lower and higher eukaryotes, autophagy seems to be crucial during embryogenesis by acting in tissue remodeling in parallel with apoptosis. An increase of autophagic cells is, in fact, observed in the embryonic stages characterized by massive cell elimination. Moreover, autophagic processes probably protect cells during metabolic stress and nutrient paucity that occur during tissue remodeling. In light of such evidence, it can be concluded that there is a close interplay between autophagy and the processes of cell death, proliferation and differentiation that determine the development of higher eukaryotes.  相似文献   

17.
18.
Microtubules, the major components of cytoskeleton, are involved in various fundamental biological processes in plants. Recent studies in mammalian cells have revealed the importance of microtubule cytoskeleton in autophagy. However, little is known about the roles of microtubules in plant autophagy. Here, we found that ATG6 interacts with TUB8/β-tubulin 8 and colocalizes with microtubules in Nicotiana benthamiana. Disruption of microtubules by either silencing of tubulin genes or treatment with microtubule-depolymerizing agents in N. benthamiana reduces autophagosome formation during upregulation of nocturnal or oxidation-induced macroautophagy. Furthermore, a blockage of leaf starch degradation occurred in microtubule-disrupted cells and triggered a distinct ATG6-, ATG5- and ATG7-independent autophagic pathway termed starch excess-associated chloroplast autophagy (SEX chlorophagy) for clearance of dysfunctional chloroplasts. Our findings reveal that an intact microtubule network is important for efficient macroautophagy and leaf starch degradation.  相似文献   

19.
Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.  相似文献   

20.
Autophagy and its role in plant abiotic stress management   总被引:1,自引:0,他引:1  
Being unable to move, plants are regularly exposed to changing environmental conditions, among which various types of abiotic stress, such as heat, drought, salt, and so forth. These might have deleterious effects on plant performance and yield. Plants thus need to adapt using appropriate stress responses. One of the outcomes of abiotic stress is the need to degrade and recycle damaged proteins and organelles. Autophagy is a conserved eukaryotic mechanism functioning in the degradation of proteins, protein aggregates, and whole organelles. It was previously shown to have a role in plant abiotic stress. This review will describe the current knowledge regarding the involvement of autophagy in plant abiotic stress response, mechanisms functioning in autophagy induction during stress, and possible direction for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号