首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crohn disease (CD), one of the major chronic inflammatory bowel diseases, occurs anywhere in the gastrointestinal tract with discontinuous transmural inflammation. A number of studies have now demonstrated that genetic predisposition, environmental influences and a dysregulated immune response to the intestinal microflora are involved. Major CD susceptibility pathways uncovered through genome-wide association studies strongly implicate the innate immune response (NOD2), in addition to the more specific acquired T cell response (IL23R, ICOSLG) and autophagy (ATG16L1, IRGM). Examination of the disease-associated microbiome, although complex, has identified several potentially contributory microorganisms, most notably adherent-invasive E.coli strains (AIEC), which have been isolated by independent investigators in both adult and pediatric CD patients. Here we discuss our recent finding that the type-III intermediate filament (IF) protein VIM/vimentin is a novel NOD2 interacting protein that regulates NOD2 activities including inflammatory NFKB1 signaling, autophagy and bacterial handling.  相似文献   

2.
《Autophagy》2013,9(2):331-338
NOD2 (nucleotide-binding oligomerization domain containing 2) functions as a pathogen sensor and is involved in development of Crohn disease, a form of inflammatory bowel disease. NOD2 functions in concert with the autophagy protein ATG16L1, which is also implicated in Crohn disease. Recently, we identified a novel protective role of ATG16L1 deficiency in uropathogenic Escherichia coli-induced urinary tract infections (UTIs), which are common infectious diseases in humans. Given the known roles of NOD2 in recruiting ATG16L1 to the bacterial entry site, autophagy induction, and Crohn disease, we hypothesized that NOD2 may also play an important role in UTI pathogenesis. Instead, we found evidence that NOD2 is dispensable in the pathogenesis of UTIs in mice and humans. First, loss of Nod2 did not affect the clearance of bacteriuria and the recruitment of innate immune cells to the bladder. Second, we showed that, although nod2?/? mice display increased kidney abscesses in the upper urinary tract, there were no increased bacterial loads or persistence in this niche. Third, although a previous study indicates that loss of Nod2 reverses the protection from intestinal infection afforded by loss of ATG16L1 in mice, we found NOD2 deficiency did not reverse the ATG16L1-deficiency-induced protection from UTI. Finally, a population-based study of a cohort of 1819 patients did not reveal any association of NOD2 polymorphisms with UTI incidence. Together, our data indicated that NOD2 is dispensable for UTI pathogenesis in both mice and humans and does not contribute to ATG16L1-deficiency-induced resistance to UTI in mice.  相似文献   

3.
《Autophagy》2013,9(3):412-414
Autophagy is important in immune cells as a means of disposing of pathogens and in connecting with the antigen presentation machinery to facilitate immune priming and initiation of a correctly targeted adaptive immune response. While Toll-like receptors (TLRs) are known to regulate autophagy in this context, the extent to which other pattern recognition receptors (PRRs) are involved has been unclear. NOD2 is an intracellular PRR of the Nod-like receptor (NLR) family that is notable in that variants in the ligand recognition domain are associated with Crohn disease (CD). Our recent study shows NOD2 activates autophagy in a manner requiring ATG16L1, another CD susceptibility gene. NOD2 autophagy induction is required for bacterial handling and MHC class II antigen presentation in human dendritic cells (DCs). CD patients DCs expressing CD risk variant NOD2 or ATG16L1 display reduced autophagy induction after NOD2 triggering resulting in reduced bacterial killing and defective antigen presentation. Aberrant bacterial handling and immune priming could act as a trigger for inflammation in CD.  相似文献   

4.
Polymorphisms in the IRGM gene, associated with Crohn disease (CD) and tuberculosis, are among the earliest identified examples documenting the role of autophagy in human disease. Functional studies have shown that IRGM protects against these diseases by modulating autophagy, yet the exact molecular mechanism of IRGM's activity has remained unknown. We have recently elucidated IRGM's mechanism of action. IRGM functions as a platform for assembling, stabilizing, and activating the core autophagic machinery, while at the same time physically coupling it to conventional innate immunity receptors. Exposure to microbial products or bacterial invasion increases IRGM expression, which leads to stabilization of AMPK. Specific protein-protein interactions and post-translational modifications such as ubiquitination of IRGM, lead to a co-assembly with IRGM of the key autophagy regulators ULK1 and BECN1 in their activated forms. IRGM physically interacts with 2 other CD risk factors, ATG16L1 and NOD2, placing these 3 principal players in CD within the same molecular complex. This explains how polymorphisms altering expression or function of any of the 3 factors individually can affect the same process—autophagy. Furthermore, IRGM's interaction with NOD2, and additional pattern recognition receptors such as NOD1, RIG-I, and select TLRs, transduces microbial signals to the core autophagy apparatus. This work solves the long-standing enigma of how IRGM controls autophagy.  相似文献   

5.
6.
《Autophagy》2013,9(9):1074-1075
In recent years considerable advances in understanding the pathogenesis of Crohn disease have been achieved, with the identification of susceptibility variants of genes that are part of the autophagy machinery, i.e., ATG16L1 and IRGM. Subsequent functional studies have been conducted to unravel the underlying mechanism of this genetic association. For the ATG16L1 Thr300Ala polymorphism (c.898A > G, rs2241880), it was demonstrated that the risk variant is associated with a reduced capacity of innate immune cells to induce autophagy upon triggering with specific microbial structures such as peptidoglycans, that are specifically recognized by the intracellular pattern-recognition receptor nucleotide oligomerization domain-2 (NOD2). Due to the impaired autophagy activation, autophagosome formation and the subsequent antigen presentation through the major histocompatibility complex are diminished, leading to decreased immune activation. However, these findings arguing for defective host defense mechanisms in individuals bearing the ATG16L1 300Ala variant, and subsequent bacterial persistence in the gut mucosa, provide no conclusive explanation for the excessive inflammation observed in Crohn disease.  相似文献   

7.
NOD2 mutations are associated with the development of granulomatous inflammatory diseases, such as early-onset sarcoidosis (EOS), Blau syndrome (BS) and Crohn's disease (CD). As a pathogen-recognition molecule for muramyl dipeptide (MDP), NOD2 controls both innate and adaptive immune responses, through the regulation of cytokines, chemokines and antimicrobial peptides production. Notably, Nod2-deficient mice experienced increased susceptibility to enteric infection and to antigen-specific colitis. Furthermore, mutant mice bearing the orthologue of the major CD-associated NOD23020ins allele showed increased susceptibility to DSS-induced colitis. However, many questions remain open. (i) Is antimicrobial function deficiency sufficient to initiate the development of CD? (ii) How impaired and mutant NOD2 might lead to increased adaptive immune response? (iii) How do the other disease-associated NOD2 mutations contribute to the development of chronic intestinal inflammation? Whatever the relevant mechanism(s), it provides a casual link between abnormal bacterial sensing and development of inflammatory disorders. Further work should now focus on restoring abnormal NOD2 function by modulating antimicrobial function and regulatory mechanisms of the adaptive immune system.  相似文献   

8.
The cytosolic pattern recognition receptor NOD2 is activated by the peptidoglycan fragment muramyl dipeptide to generate a proinflammatory immune response. Downstream effects include the secretion of cytokines such as interleukin 8, the upregulation of pro-interleukin 1β, the induction of autophagy, the production of antimicrobial peptides and defensins, and contributions to the maintenance of the composition of the intestinal microbiota. Polymorphisms in NOD2 are the cause of the inflammatory disorder Blau syndrome and act as susceptibility factors for the inflammatory bowel condition Crohn''s disease. The complexity of NOD2 signalling is highlighted by the observation that over 30 cellular proteins interact with NOD2 directly and influence or regulate its functional activity. Previously, the majority of reviews on NOD2 function have focused upon the role of NOD2 in inflammatory disease or in its interaction with and response to microbes. However, the functionality of NOD2 is underpinned by its biochemical interactions. Consequently, in this review, we have taken the opportunity to address the more ‘basic’ elements of NOD2 signalling. In particular, we have focused upon the core interactions of NOD2 with protein factors that influence and modulate the signal transduction pathways involved in NOD2 signalling. Further, where information exists, such as in relation to the role of RIP2, we have drawn comparison with the closely related, but functionally discrete, pattern recognition receptor NOD1. Overall, we provide a comprehensive resource targeted at understanding the complexities of NOD2 signalling.  相似文献   

9.
NOD2 (nucleotide-binding oligomerization domain containing 2) functions as a pathogen sensor and is involved in development of Crohn disease, a form of inflammatory bowel disease. NOD2 functions in concert with the autophagy protein ATG16L1, which is also implicated in Crohn disease. Recently, we identified a novel protective role of ATG16L1 deficiency in uropathogenic Escherichia coli-induced urinary tract infections (UTIs), which are common infectious diseases in humans. Given the known roles of NOD2 in recruiting ATG16L1 to the bacterial entry site, autophagy induction, and Crohn disease, we hypothesized that NOD2 may also play an important role in UTI pathogenesis. Instead, we found evidence that NOD2 is dispensable in the pathogenesis of UTIs in mice and humans. First, loss of Nod2 did not affect the clearance of bacteriuria and the recruitment of innate immune cells to the bladder. Second, we showed that, although nod2 −/− mice display increased kidney abscesses in the upper urinary tract, there were no increased bacterial loads or persistence in this niche. Third, although a previous study indicates that loss of Nod2 reverses the protection from intestinal infection afforded by loss of ATG16L1 in mice, we found NOD2 deficiency did not reverse the ATG16L1-deficiency-induced protection from UTI. Finally, a population-based study of a cohort of 1819 patients did not reveal any association of NOD2 polymorphisms with UTI incidence. Together, our data indicated that NOD2 is dispensable for UTI pathogenesis in both mice and humans and does not contribute to ATG16L1-deficiency-induced resistance to UTI in mice.  相似文献   

10.
Klebsiella pneumoniae is an important cause of community‐acquired and nosocomial pneumonia. Subversion of inflammation is essential for pathogen survival during infection. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response although the molecular bases are currently unknown. Here we unveil a novel strategy employed by a pathogen to counteract the activation of inflammatory responses. K. pneumoniae attenuates pro‐inflammatory mediators‐induced IL‐8 secretion. Klebsiella antagonizes the activation of NF‐κB via the deubiquitinase CYLD and blocks the phosphorylation of mitogen‐activated protein kinases (MAPKs) via the MAPK phosphatase MKP‐1. Our studies demonstrate that K. pneumoniae has evolved the capacity to manipulate host systems dedicated to control the immune balance. To exert this anti‐inflammatory effect, Klebsiella engages NOD1. In NOD1 knock‐down cells, Klebsiella neither induces the expression of CYLD and MKP‐1 nor blocks the activation of NF‐κB and MAPKs. Klebsiella inhibits Rac1 activation; and inhibition of Rac1 activity triggers a NOD1‐mediated CYLD and MKP‐1 expression which in turn attenuates IL‐1β‐induced IL‐8 secretion. A capsule (CPS) mutant does not attenuate the inflammatory response. However, purified CPS neither reduces IL‐1β‐induced IL‐8 secretion nor induces the expression of CYLD and MKP‐1 thereby indicating that CPS is necessary but not sufficient to attenuate inflammation.  相似文献   

11.
Several coding variants of NOD2 and ATG16L1 are associated with increased risk of Crohn disease (CD). NOD2, a cytosolic receptor of the innate immune system activates pro-inflammatory signalling cascades upon recognition of bacterial muramyl dipeptide, but seems also to be involved in antiviral and anti-parasitic defence programs. The CD associated variant L1007fsinsC leads to impaired pro-inflammatory signalling and diminished bacterial clearance. ATG16L1 is a protein essential for autophagosome formation at the phagophore assembly site. The CD associated T300A variant is located in the c-terminal WD40 domain, whose function is still unknown. Basal autophagy is not affected by the T300A variant, but antibacterial autophagy (xenophagy) is impaired, a finding that relates ATG16L1 as well as NOD2 to pathogen defence. Notably, combination of disease-associated alleles of ATG16L1 and NOD2/CARD15 leads to synergistically increased susceptibility for CD, indicating a possible crosstalk between NOD2- and ATG16L1-mediated processes in the pathogenesis of CD. This review surveys current research results and discusses the functional models of potential interplay between NLR-pathways and xenophagy. Interaction between pathways is discussed in the context of reactive oxygen species (ROS), membrane co-localisation, antigen processing and implications of disturbed Paneth cell vesicle export. These effects on pathogen response might imbalance the intestinal barrier epithelia towards chronic inflammation and promote development of Crohn disease. Further elucidation of NOD2/ATG16L1 interplay in xenophagy is relevant for understanding the aetiology of chronic intestinal inflammation and host-microbe interaction in general and could lead to principal new insights to xenophagy induction.  相似文献   

12.
Ileal lesions in Crohn's disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC). AIEC bacteria are able to replicate within epithelial cells after lysis of the endocytic vacuole and within macrophages in a large vacuole. CD-associated polymorphisms in NOD2, ATG16L1 and IRGM affect bacterial autophagy, a crucial innate immunity mechanism. We previously determined that defects in autophagy impaired the ability of epithelial cells to control AIEC replication. AIEC behave differently within epithelial cells and macrophages and so we investigated the impact of defects in autophagy on AIEC intramacrophagic replication and pro-inflammatory cytokine response. AIEC bacteria induced the recruitment of the autophagy machinery at the site of phagocytosis, and functional autophagy limited AIEC intramacrophagic replication. Impaired ATG16L1, IRGM or NOD2 expression induced increased intramacrophagic AIEC and increased secretion of IL-6 and TNF-α in response to AIEC infection. In contrast, forced induction of autophagy decreased the numbers of intramacrophagic AIEC and pro-inflammatory cytokine release, even in a NOD2-deficient context. On the basis of our findings, we speculate that stimulating autophagy in CD patients would be a powerful therapeutic strategy to concomitantly restrain intracellular AIEC replication and slow down the inflammatory response.  相似文献   

13.
14.
NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2.  相似文献   

15.
《Autophagy》2013,9(12):2046-2055
Genome-wide association studies have identified several genes implicated in autophagy (ATG16L1, IRGM, ULK1, LRRK2, and MTMR3), intracellular bacterial sensing (NOD2), and endoplasmic reticulum (ER) stress (XBP1 and ORMDL3) to be associated with Crohn disease (CD). We studied the known CD-associated variants in these genes in a large cohort of 3451 individuals (1744 CD patients, 793 ulcerative colitis (UC) patients and 914 healthy controls). We also investigated the functional phenotype linked to these genetic variants. Association with CD was confirmed for NOD2, ATG16L1, IRGM, MTMR3, and ORMDL3. The risk for developing CD increased with an increasing number of risk alleles for these genes (P < 0.001, OR 1.26 [1.20 to 1.32]). Three times as many (34.8%) CD patients carried a risk allele in all three pathways, in contrast to 13.3% of the controls (P < 0.0001, OR = 3.46 [2.77 to 4.32]). For UC, no significant association for one single nucleotide polymorphism (SNP) was found, but the risk for development of UC increased with an increasing total number of risk alleles (P = 0.001, OR = 1.10 [1.04 to 1.17]). We found a genetic interaction between reference SNP (rs)2241880 (ATG16L1) and rs10065172 (IRGM) in CD. Functional experiments hinted toward an association between an increased genetic risk and an augmented inflammatory status, highlighting the relevance of the genetic findings.  相似文献   

16.
Crohn’s disease (CD) is a chronic inflammatory bowel disease whose relevance is increasing in industrialized society. Recent genome wide association studies revealed over seventy one loci associated with disease penetrance. Several variants that increase disease risk encode for altered proteins that diminish bacterial host defense. NOD2 alters intracellular bacterial sensing while ATG16L1 is thought to diminish bacterial clearance by impairing autophagy. Additionally, changes in the IBD5 locus are thought to diminish barrier function. Alternatively, recent data indicate a gain of function genetic variant of IL23R is protective amongst European CD patients. These recent genetic discoveries contradict historical theories that Crohn’s disease results from overactive auto-aggressive responses. Rather, new genetic data suggest disease-associated variants encode for dysfunctional proteins that diminish essential innate immune responses against commensal organisms. This review provides an overview of these critical discoveries and places them in their biological context.  相似文献   

17.
Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.  相似文献   

18.
NOD1 {nucleotide-binding oligomerization domain 1; NLRC [NOD-LRR (leucine-rich repeat) family with CARD (caspase recruitment domain) 1]} and NOD2 (NLRC2) are among the most prominent members of the NLR (NOD-LRR) family –proteins that contain nucleotide-binding NACHT domains and receptor-like LRR domains. With over 20 members identified in humans, NLRs represent important components of the mammalian innate immune system, serving as intracellular receptors for pathogens and for endogenous molecules elaborated by tissue injury. NOD1 and NOD2 proteins operate as microbial sensors through the recognition of specific PG (peptidoglycan) constituents of bacteria. Upon activation, these NLR family members initiate signal transduction mechanisms that include stimulation of NF-κB (nuclear factor-κB), stress kinases, IRFs (interferon regulatory factors) and autophagy. Hereditary polymorphisms in the genes encoding NOD1 and NOD2 have been associated with an increasing number of chronic inflammatory diseases. In fact, potential roles for NOD1 and NOD2 in inflammatory disorders have been revealed by investigations using a series of animal models. In the present review, we describe recent experimental findings associating NOD1 and NOD2 with various autoimmune and chronic inflammatory disorders, and we discuss prospects for development of novel therapeutics targeting these NLR family proteins.  相似文献   

19.
《Autophagy》2013,9(12):2033-2045
Inflammation participates centrally in all stages of atherosclerosis (AS), which begins with inflammatory changes in the endothelium, characterized by expression of the adhesion molecules. Resveratrol (RSV) is a naturally occurring phytoalexin that can attenuate endothelial inflammation; however, the exact mechanisms have not been thoroughly elucidated. Autophagy refers to the normal process of cell degradation of proteins and organelles, and is protective against certain inflammatory injuries. Thus, we intended to determine the role of autophagy in the antiinflammatory effects of RSV in human umbilical vein endothelial cells (HUVECs). We found that RSV pretreatment reduced tumor necrosis factor α (TNF/TNFα)-induced inflammation and increased MAP1LC3B2 (microtubule-associated protein 1 light chain 3 β 2) expression and SQSTM1/p62 (sequestosome 1) degradation in a concentration-dependent manner. A bafilomycin A1 (BafA1) challenge resulted in further accumulation of MAP1LC3B2 in HUVECs. Furthermore, autophagy inhibitors 3-methyladenine (3-MA), chloroquine as well as ATG5 and BECN1 siRNA significantly attenuated RSV-induced autophagy, which, subsequently, suppressed the downregulation of RSV-induced inflammatory factors expression. RSV also increased cAMP (cyclic adenosine monophosphate) content, the expression of PRKA (protein kinase A) and SIRT1 (sirtuin 1), as well as the activity of AMPK (AMP-activated protein kinase). RSV-induced autophagy in HUVECs was abolished in the presence of inhibitors of ADCY (adenylyl cyclase, KH7), PRKA (H-89), AMPK (compound C), or SIRT1 (nicotinamide and EX-527), as well as ADCY, PRKA, AMPK, and SIRT1 siRNA transfection, indicating that the effects of RSV on autophagy induction were dependent on cAMP, PRKA, AMPK and SIRT1. In conclusion, RSV attenuates endothelial inflammation by inducing autophagy, and the autophagy in part was mediated through the activation of the cAMP-PRKA-AMPK-SIRT1 signaling pathway.  相似文献   

20.
NOD2 is one of the best characterized members of the cytosolic NOD-like receptor family. NOD2 is able to sense muramyl dipeptide, a specific bacterial cell wall component, and to subsequently induce various signaling pathways leading to NF-κB activation and autophagy, both events contributing to an efficient innate and adaptive immune response. Interestingly, loss-of-function NOD2 variants were associated with a higher susceptibility for Crohn disease, which highlights the physiological importance of proper regulation of NOD2 activity. We performed a biochemical screen to search for new NOD2 regulators. We identified a new NOD2 partner, c-Jun N-terminal kinase-binding protein 1 (JNKBP1), a scaffold protein characterized by an N-terminal WD-40 domain. JNKBP1, through its WD-40 domain, binds to NOD2 following muramyl dipeptide activation. This interaction attenuates NOD2-mediated NF-κB activation and IL-8 secretion as well as NOD2 antibacterial activity. JNKBP1 exerts its repressor effect by disturbing NOD2 oligomerization and RIP2 tyrosine phosphorylation, both steps required for downstream NOD2 signaling. We furthermore showed that JNKBP1 and NOD2 are co-expressed in the human intestinal epithelium and in immune cells recruited in the lamina propria, which suggests that JNKBP1 contributes to maintain NOD2-mediated intestinal immune homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号