首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Processing of bacteriophage T4 tRNAs. The role of RNAase III   总被引:2,自引:0,他引:2  
In order to assess the contribution of the processing enzyme RNAase III to the maturation of bacteriophage T4 transfer RNA, RNAase III+ and RNAase III? strains were infected with T4 and the tRNAs produced were analyzed. Infection of the RNAase III+ strains of Escherichia coli with T4Δ27, a deletion strain missing seven of the ten genes in the T4 tRNA cluster, results in the appearance of a transient 10.1 S RNA molecule as well as the three stable RNAs encoded by T4Δ27, species 1, rRNALeu and tRNAGln. Infection of an RNAase III? strain results in the appearance of a larger, transient RNA molecule, 10.5 S, and a severe reduction in the accumulation of tRNAGln. The 10.5 S RNA is similar to 10.1 S RNA but contains extra nucleotides (about 50) at the 5′ end. (10.1 S contains all the three final molecules plus about 70 extra nucleotides at the 3′ end.) Both 10.5 S and 10.1 S RNAs can be processed in vitro into the three final molecules. When 10.1 S is the substrate, the three final molecules are obtained whether extracts of RNAase III+ or RNAase III? cells are used. However, when 10.5 S is the substrate RNAase III+ extracts bring out normal maturation, while using RNAase III? extracts the level of tRNAGln is severely reduced. When 10.5 S is used with RNAase III+ extracts maturation proceeds via 10.1 S RNA, while when RNAase III? extracts were used 10.1 S is not detected. The 10.5 S RNA can be converted to 10.1 S RNA by RNAase III in a reaction which produces only two fragments. The sequence at the 5′ end of the 10.5 S suggests a secondary structure in which the RNAase III cleavage site is in a stem. These experiments show that the endonucleolytic RNA processing enzyme RNAase III is required for processing at the 5′ end of the T4 tRNA cluster where it introduces a cleavage six nucleotides proximal to the first tRNA, tRNAGln, in the cluster.  相似文献   

3.
4.
Precursor molecules for Escherichia coli tRNAs that accumulated in a temperature-sensitive mutant defective in tRNA synthesis (TS709) were investigated. More than 20 precursors were purified by two-dimensional polyacrylamide gel electrophoresis. The purified molecules were analyzed by RNA fingerprint analysis and/or in vitro processing after treatment with E. coli cell-free extracts. The molecular sizes of most of the precursors identified were in the range of 4 to 5 S RNAs, although several larger ones were also detected. Fingerprint analysis revealed that the precursors generally differ from the corresponding mature tRNAs in the 5′ termini, having extra nucleotides. Thus, the genetic block in TS709 was shown to affect the trimming of the 5′ side of tRNA by impairing the function of RNAase P. Although this mutant had been isolated as a conditional mutant defective in the synthesis of su+ 3 tRNA1Tyr, the synthesis of many tRNA species was affected at high temperature. On the basis of their mode of maturation in vivo, the precursor molecules were discussed as intermediates in tRNA biosynthesis in E. coli. Accumulation of these intermediates was accounted for as a common feature of E. coli mutants defective in RNAase P function.  相似文献   

5.
6.
7 S RNA accumulates at non-permissive temperatures in an RNAase E strain containing the recombinant plasmid pJR3Δ which carries a single 5 S rRNA gene and expression sequences. 7 S RNA is a processing intermediate that contains the complete sequence of 5 S rRNA as well as a stem-and-loop structure encoded by the terminator of rrnD. 7 S RNA can be processed in vitro by RNAase E. Structural analysis of the products (5 S rRNA and the stem) of in vitro processing of 7 S RNA revealed that the cleavage site of RNAase E in 7 S RNA is 3 nucleotides downstream from the 3′ end of the mature 5 S rRNA. The cleavage generates 3′-hydroxyl and 5′-phosphate termini.  相似文献   

7.
T7 early messenger RNAs are the direct products of ribonuclease III cleavage   总被引:20,自引:0,他引:20  
T7 early RNAs were synthesized in vitro by transcribing T7 DNA with Escherichia coli RNA polymerase and treating the resulting precursor molecule with ribonuelease III. Oligonucleotide fragments from the 5′ and 3′ termini of several of the cleaved species were then selectively isolated. Structural analysis revealed sequences identical to the corresponding in vivo RNAs. Thus, the T7 early RNAs found in phage-infected cells appear to be the direct products of RNAase III cleavage of a large precursor molecule. We conclude further that RNAase III action on this particular natural substrate is a sequence-specific event.  相似文献   

8.
A latent RNAase activity stimulated by nucleoside triphosphates has been isolated from a yeast chromatin extract, by filtration on Sepharose 6B and hydroxyapatite chromatography. The RNAase was separated from a thermolabile proteic inhibitor on phosphocellulose. When separated from the inhibitor, the RNAase hydrolyses RNA to 5′-mononucleotides. Its activity is retained in the presence of EDTA, and 50% inhibited by 1 mM ATP or CTP. The RNAase is inhibited by the thermolabile component only in the presence of divalent cations. The activity is recovered upon addition of 0.01 mM ATP to the mixture. The Km for ATP is 10 μM. ATP can be replaced by other ribo- or deoxyribonucleoside triphosphates with varying efficiency but not by ADP, AMP or cAMP. These results suggest multiple interactions between the RNAase, a regulatory component, divalent cations and nucleoside triphosphates.  相似文献   

9.
Escherichia coli strains BN and CAN are unable to support the growth of bacteriophage T4 psu1+-amber double mutants. For strain BN, this phenotype has been attributed to a defect in 3′ processing of the precursor to psu1+ tRNASer. Since RNAase D and RNAase II are the only well-characterized 3′ exoribonucleases to be implicated in tRNA processing, the status of these activities and their genes in the mutant strains was investigated. Although extracts of strains BN and CAN were defective for hydrolysis of the artificial tRNA precursor, tRNA-C-U, these strains contained normal levels of RNAase D and RNAase II, and purified RNAase D or RNAase II could only partially complement the mutant extracts. Introduction of the wild-type RNAase D gene into strains BN and CAN did not correct the mutant phenotype. Likewise, strains defective in RNAase D and/or RNAase II plated T4psu1+-amber phage normally. These results indicate that the tRNA processing defect in strains BN and CAN is not due to a mutation in either RNAase U or RNAase II. The possibility that the mutation in these strains affects another exoribonuclease or a factor influencing the activity and specificity of RNAase D or RNAase II is discussed.  相似文献   

10.
The kinetics of regain of 2′-CMP binding are monitored during renaturation of RNAase S. Experiments were performed by mixing equimolar amounts of S-peptide with S-protein. The S-protein fragment was incubated initially (i.e. before mixing with S-peptide) at pH 6.2 or 1.7 and various guanidine hydrochloride (GuHCl) concentrations. Three well-resolved phases are observed. The fastest phase is second-order. The reciprocal half-time increases linearly with fragment concentration and is independent of initial conditions for the S-protein fragment. An apparent on rate of kon = 2 × 105m?1s?1 is measured in 0.5 m-GuHCl (pH 6.2) and 20 ° C. Identical association kinetics are observed by changes in tyrosine absorbance. The fraction of native RNAase S formed in this second-order reaction strictly equals the fraction of S-protein molecules with intact β-sheet in initial conditions. The relation holds for different pH values, GuHCl concentrations and temperatures. The fraction of apparent helical content of S-protein in initial conditions may also vary but this is not reflected by the association reaction. We interpret this to mean that the β-sheet but not the α-helices must be preformed in initial conditions in order to generate the high-affinity peptide binding site of S-protein. Furthermore, it is concluded that the S-protein moiety β-sheet forms or unfolds in a single one-step reaction. 2′-CMP binding reports, additionally, two slower phases of renaturation. These are produced by S-protein molecules that have their β-sheet unfolded in initial conditions. It is observed that a unique dependence of these two folding rates exists for RNAase A, RNAase S and S-protein as function of tm, the temperature of half-completion of thermal denaturation as measured by unfolding of the β-sheet in the respective compound in final conditions. The tm value varies with changing pH, with GuHCl concentration and (for RNAase S) with changing fragment concentration. The findings are interpreted to argue in favor of a sequential mechanism of folding, where the stability of a structural precursor determines the rate of folding.  相似文献   

11.
12.
WE recently described some of the properties of a temperature sensitive mutant of Escherichia coli (refs. 1–3 and unpublished work) in which RNAase II activity is increased on transfer to the non-permissive temperature1,2, while the functional half-life of β-galactosidase mRNA1 and the chemical half-life of the lac Operon mRNA3 are decreased. Questions raised by these studies were (a) can the strain be considered a general messenger RNAase mutant and (b) what is the direction of messenger inactivation in this strain? The latter question is particularly interesting since the increased RNAase activity in this strain is that of RNAase II (unpublished work) which degrades RNA molecules in the 3′ to 5′ direction4, while mRNA is known to be degraded in the 5′ to 3′ direction5,6.  相似文献   

13.
Ben Y. Tseng  Mehran Goulian 《Cell》1977,12(2):483-489
A short RNA covalently associated with nascent DNA has been isolated after synthesis in vitro with labeled ribonucleoside triphosphates and the removal of DNA by DNAase digestion. The RNA migrates in polyacrylamide gels or chromatographs on DEAE-Sephadex columns as a relatively discrete oligonucleotide 8–11 nucleotides in length. The RNA is associated primarily with nascent DNA with stoichiometry of approximately one per DNA chain. The RNA has a triphosphate group at the 5′ end and 2 or 3 deoxynucleotide residues at the 3′ end that are not removed by DNAase. These results further support a role for the RNA as an initiator of discontinuous DNA synthesis. Examination of sequences present at the 3′ end of the RNA using RNAase to effect transfer of 32PO4 from 32P-labeled DNA to covalently attached RNA indicates that a diverse, rather than unique, set of sequences are present in the RNA.  相似文献   

14.
Role of plasmid-coded RNA and ribonuclease III in plasmid DNA replication.   总被引:24,自引:0,他引:24  
S E Conrad  J L Campbell 《Cell》1979,18(1):61-71
  相似文献   

15.
Summary A mutant of E. coli K 12 AB301 RNAase 19 - , selected for its inability to degrade double-stranded RNA, has been isolated and shown to have less than 1% of RNAase III-activity related to the parental strain.Abbreviations TCA trichloracetic acid - RF replicative form of phage-RNA Enzymes Lysozyme (E.C. 3.2.1.17) - RNAase (E.C. 2.7.7.16) - DNAase (E.C. 3.1.4.5)  相似文献   

16.
A possible complex containing RNA processing enzymes   总被引:5,自引:0,他引:5  
The three enzymes, RNAase III, RNAase E and RNAase P participate in the processing of RNA precursors in Escherichia coli. In extracts which contain a mutated RNAase III or RNAase E under certain conditions RNAase P activity is not expressed while in the wild-type extract it is. Upon high-speed centrifugation of a cell extract from a strain of E.,coli, which contains all these three enzymes, the majority of RNAase P, RNAase III and RNAase E activities sediment as particles heavier than their known sizes. In a sucrose density gradient of the cell extract, part of RNAase E and RNAase P activities co-sediment while most of the RNAase III activity is found toward the top of the gradient. This behavior is distinct from other ribonucleases such as RNAase II and RNAase H, which do not sediment as complexes. This complex does not seem to be caused merely by the association of the enzymes with ribosomes.  相似文献   

17.
Different double-stranded RNA species from Penicillium stoloniferum virus have been phosphorylated at the 5′ termini with the aid of polynucleotide kinase. A very low phosphate uptake has been observed which, especially in the case of a relatively small molecular component, was increased several times by pretreatment with RNAase t1. Adenosine and uridine have been detected at the 5′-termini of this RNA component. Digestion with RNAase T1, an enzyme which does not cut across the two strands of a double-stranded RNA molecule, produced a new uridine terminus and increased the efficiency of phosphorylation. It is concluded that this double-stranded RNA molecule contains single-stranded stretches at or near the 5′-termini. The possibility of a circular structure being formed by the annealing of single-stranded tails is discussed.  相似文献   

18.
A cell-free simian virus 40 (SV40) DNA replication system served to study the role of RNA in the initiation of nascent DNA chains of less than 200 nucleotides (Okazaki pieces). RNA-DNA covalent linkages were found to copurify with SV40 replicating DNA. These linkages were identified by transfer of a fraction of the 32P from the 5′ position of a deoxyribonucleotide to 2′(3′)rNMPs upon either alkaline hydrolysis or RNAase T2 digestion of SV40 replicating [32P]DNA. Alkaline hydrolysis also exposed 5′ terminal hydroxyl groups in the nascent DNA which were detected as nucleosides after digestion with P1 nuclease. The RNA-DNA covalent linkages resulted from a population of Okazaki pieces containing uniquely sized oligoribonucleotides covalently attached to their 5′ termini (RNA primers). The density of a portion of the Okazaki pieces in potassium iodide gradients corresponded to a content of 90% DNA and 10% RNA, while the remaining Okazaki pieces appeared to contain only DNA. Incubation of Okazaki pieces with a defined length in the presence of either RNAase T2 or potassium hydroxide converted about one-third to one-half of them intto a second well defined group of DNA chains of greater electrophoretic mobili y in polyacrylamide gels. The increased mobility corresponded to the removalof at least seven-residues. Since alkaline hydrolysis of similar Okazaki pieces revealed that one-third to one-half of them contained rN-32P-dN linkages, the oligoribonucleotides must be covalently attached to the 5′ ends of nascent DNA chains. Although the significance of two populations of Okazaki pieces, one with and one without RNA primers, is imperfectly understood, a sizable fraction of nascent DNA chains clearly contained RNA primers.Neither the length of the RNA primer nor the number of RNA primers per DNA chain changed significantly with increasing length of Okazaki pieces. Since the frequency of RNA-DNA junctions found in nascent DNA chains greater than 400 nucleotides was similar to that of Okazaki pieces, the complete excision of RNA primers appears to occur after Okazaki pieces are joined to the 5′ end of growing daughter strands.32P-label transfer analysis of Okazaki pieces recovered from hybrids with isolated HindII + III restriction fragments of SV40 DNA revealed a uniform distribution of rN-P-dN sequences around the replicating DNA molecule. Therefore, most, if not all, RNA primers serve to initiate Okazaki pieces rather than to initiate DNA replication at the origin of the genome. Moreover, the positions of RNA primers are not determined by a specific set of nucleotide sequences.  相似文献   

19.
The purification to homogeneity of a new ribonuclease, named RNAase SPL, from bovine seminal plasma is described. This nuclease, like the bovine pancreatic RNAase A, is pyrimidine specific. Its activity on single-stranded synthetic polyribonucleotides such as poly(rU) is significantly higher than that of RNAase A. However, unlike RNAase A, RNAase SPL is highly active on a double-stranded RNA such as poly[r(A · U)], and shows extremely limited activity on naturally occurring RNAs, such as Escherichia coli RNA, prepared with Mg2+ present throughout the isolation procedure. Under conditions of limiting hydrolysis in which RNAase A degrades 60 to 90% of total E. coli RNA to acid-soluble material and the remaining to material having a molecular weight lower than that of transfer RNA, RNAase SPL does not yield any acid-soluble products: it does not appear to degrade tRNA or 5 S RNA, and causes only a small number of nicks in the remaining RNAs to yield a limiting digest containing products with molecular weights ranging between 10,000 and 150,000. Absence of Mg2+ during the isolation procedure, or heat denaturation of the RNA makes it as susceptible to RNAase SPL as it is to RNAase A.The above and other related observations reported here support the view that there are Mg2+-dependent structural features, besides single and doublestrandedness, in naturally occurring RNAs, that can be distinguished by using the two nucleases RNAase SPL and RNAase A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号